DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li6Co3P8O29 by Materials Project

Abstract

Li6Co3P8O29 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 2.00–2.17 Å. In the second Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.92–2.19 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.94–2.07 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distancesmore » ranging from 1.97–2.03 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.98–2.09 Å. In the sixth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.90–2.22 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.98–2.05 Å. In the eighth Li1+ site, Li1+ is bonded to six O2- atoms to form distorted LiO6 octahedra that share corners with six PO4 tetrahedra and edges with three LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.28–2.54 Å. In the ninth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CoO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 65–67°. There are a spread of Li–O bond distances ranging from 1.93–2.13 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CoO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 66–72°. There are a spread of Li–O bond distances ranging from 1.91–2.20 Å. In the eleventh Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.09 Å. In the twelfth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.96–2.15 Å. There are six inequivalent Co4+ sites. In the first Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.90–2.10 Å. In the second Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and edges with two LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.93–2.05 Å. In the third Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.91–2.10 Å. In the fourth Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.84–1.99 Å. In the fifth Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.87–2.16 Å. In the sixth Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and edges with two LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.90–2.06 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 30–40°. There are a spread of P–O bond distances ranging from 1.54–1.59 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 37–39°. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–41°. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–48°. There are a spread of P–O bond distances ranging from 1.52–1.60 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–52°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–46°. There are a spread of P–O bond distances ranging from 1.52–1.59 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 44–56°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and a cornercorner with one LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 37–42°. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–53°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 42–44°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 49–52°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–48°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–47°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–50°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–48°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with four LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–49°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. There are fifty-eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Co4+, and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the third O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the fifth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Co4+, and one P5+ atom. In the sixth O2- site, O2- is bonded in a linear geometry to one Li1+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Co4+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Co4+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Co4+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Co4+, and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Co4+, and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Co4+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the fifteenth O2- site, O2- is bonded in a distorted trigonal pla« less

Authors:
Publication Date:
Other Number(s):
mp-705373
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li6Co3P8O29; Co-Li-O-P
OSTI Identifier:
1285903
DOI:
https://doi.org/10.17188/1285903

Citation Formats

The Materials Project. Materials Data on Li6Co3P8O29 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1285903.
The Materials Project. Materials Data on Li6Co3P8O29 by Materials Project. United States. doi:https://doi.org/10.17188/1285903
The Materials Project. 2020. "Materials Data on Li6Co3P8O29 by Materials Project". United States. doi:https://doi.org/10.17188/1285903. https://www.osti.gov/servlets/purl/1285903. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1285903,
title = {Materials Data on Li6Co3P8O29 by Materials Project},
author = {The Materials Project},
abstractNote = {Li6Co3P8O29 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 2.00–2.17 Å. In the second Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.92–2.19 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.94–2.07 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.97–2.03 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.98–2.09 Å. In the sixth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.90–2.22 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, an edgeedge with one LiO6 octahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.98–2.05 Å. In the eighth Li1+ site, Li1+ is bonded to six O2- atoms to form distorted LiO6 octahedra that share corners with six PO4 tetrahedra and edges with three LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 2.28–2.54 Å. In the ninth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CoO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 65–67°. There are a spread of Li–O bond distances ranging from 1.93–2.13 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with three CoO6 octahedra and corners with four PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 66–72°. There are a spread of Li–O bond distances ranging from 1.91–2.20 Å. In the eleventh Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.09 Å. In the twelfth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one CoO6 octahedra. There are a spread of Li–O bond distances ranging from 1.96–2.15 Å. There are six inequivalent Co4+ sites. In the first Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.90–2.10 Å. In the second Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and edges with two LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.93–2.05 Å. In the third Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra and corners with six PO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.91–2.10 Å. In the fourth Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.84–1.99 Å. In the fifth Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.87–2.16 Å. In the sixth Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and edges with two LiO4 tetrahedra. There are a spread of Co–O bond distances ranging from 1.90–2.06 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 30–40°. There are a spread of P–O bond distances ranging from 1.54–1.59 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 37–39°. There are a spread of P–O bond distances ranging from 1.54–1.56 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–41°. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–48°. There are a spread of P–O bond distances ranging from 1.52–1.60 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–52°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–46°. There are a spread of P–O bond distances ranging from 1.52–1.59 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 44–56°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three CoO6 octahedra and a cornercorner with one LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 37–42°. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–53°. There are a spread of P–O bond distances ranging from 1.52–1.62 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 42–44°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 49–52°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 45–48°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO6 octahedra, corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–47°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–50°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–48°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two CoO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with four LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–49°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. There are fifty-eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Co4+, and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the third O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the fifth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Co4+, and one P5+ atom. In the sixth O2- site, O2- is bonded in a linear geometry to one Li1+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Co4+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Co4+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Co4+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Co4+, and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Co4+, and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Co4+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the fifteenth O2- site, O2- is bonded in a distorted trigonal pla},
doi = {10.17188/1285903},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}