DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on KNaCu(Si2O5)2 by Materials Project

Abstract

KNaCu(Si2O5)2 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. K1+ is bonded in a 4-coordinate geometry to ten O2- atoms. There are a spread of K–O bond distances ranging from 2.71–3.42 Å. Na1+ is bonded in a 7-coordinate geometry to seven O2- atoms. There are a spread of Na–O bond distances ranging from 2.41–2.96 Å. Cu2+ is bonded to five O2- atoms to form distorted CuO5 square pyramids that share corners with five SiO4 tetrahedra and an edgeedge with one CuO5 square pyramid. There are a spread of Cu–O bond distances ranging from 1.98–2.73 Å. There are four inequivalent Si4+ sites. In the first Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one CuO5 square pyramid and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.65 Å. In the second Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share corners with two equivalent CuO5 square pyramids and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.66 Å. In the third Si4+ site, Si4+ is bonded to fourmore » O2- atoms to form SiO4 tetrahedra that share a cornercorner with one CuO5 square pyramid and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.65 Å. In the fourth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one CuO5 square pyramid and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.66 Å. There are ten inequivalent O2- sites. In the first O2- site, O2- is bonded in a 2-coordinate geometry to one K1+, one Na1+, and two Si4+ atoms. In the second O2- site, O2- is bonded in a 1-coordinate geometry to one Na1+, two equivalent Cu2+, and one Si4+ atom. In the third O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two equivalent K1+ and two Si4+ atoms. In the fourth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one K1+ and two Si4+ atoms. In the fifth O2- site, O2- is bonded to two equivalent Na1+, one Cu2+, and one Si4+ atom to form distorted edge-sharing ONa2CuSi trigonal pyramids. In the sixth O2- site, O2- is bonded in a 2-coordinate geometry to one K1+, one Na1+, one Cu2+, and one Si4+ atom. In the seventh O2- site, O2- is bonded in a 2-coordinate geometry to two equivalent K1+ and two Si4+ atoms. In the eighth O2- site, O2- is bonded in a 4-coordinate geometry to one K1+, one Na1+, one Cu2+, and one Si4+ atom. In the ninth O2- site, O2- is bonded in a 2-coordinate geometry to one K1+, one Na1+, and two Si4+ atoms. In the tenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one K1+ and two Si4+ atoms.« less

Authors:
Publication Date:
Other Number(s):
mp-543047
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; KNaCu(Si2O5)2; Cu-K-Na-O-Si
OSTI Identifier:
1266919
DOI:
https://doi.org/10.17188/1266919

Citation Formats

The Materials Project. Materials Data on KNaCu(Si2O5)2 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1266919.
The Materials Project. Materials Data on KNaCu(Si2O5)2 by Materials Project. United States. doi:https://doi.org/10.17188/1266919
The Materials Project. 2020. "Materials Data on KNaCu(Si2O5)2 by Materials Project". United States. doi:https://doi.org/10.17188/1266919. https://www.osti.gov/servlets/purl/1266919. Pub date:Thu Jul 23 00:00:00 EDT 2020
@article{osti_1266919,
title = {Materials Data on KNaCu(Si2O5)2 by Materials Project},
author = {The Materials Project},
abstractNote = {KNaCu(Si2O5)2 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. K1+ is bonded in a 4-coordinate geometry to ten O2- atoms. There are a spread of K–O bond distances ranging from 2.71–3.42 Å. Na1+ is bonded in a 7-coordinate geometry to seven O2- atoms. There are a spread of Na–O bond distances ranging from 2.41–2.96 Å. Cu2+ is bonded to five O2- atoms to form distorted CuO5 square pyramids that share corners with five SiO4 tetrahedra and an edgeedge with one CuO5 square pyramid. There are a spread of Cu–O bond distances ranging from 1.98–2.73 Å. There are four inequivalent Si4+ sites. In the first Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one CuO5 square pyramid and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.65 Å. In the second Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share corners with two equivalent CuO5 square pyramids and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.66 Å. In the third Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one CuO5 square pyramid and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.65 Å. In the fourth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one CuO5 square pyramid and corners with three SiO4 tetrahedra. There are a spread of Si–O bond distances ranging from 1.60–1.66 Å. There are ten inequivalent O2- sites. In the first O2- site, O2- is bonded in a 2-coordinate geometry to one K1+, one Na1+, and two Si4+ atoms. In the second O2- site, O2- is bonded in a 1-coordinate geometry to one Na1+, two equivalent Cu2+, and one Si4+ atom. In the third O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two equivalent K1+ and two Si4+ atoms. In the fourth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one K1+ and two Si4+ atoms. In the fifth O2- site, O2- is bonded to two equivalent Na1+, one Cu2+, and one Si4+ atom to form distorted edge-sharing ONa2CuSi trigonal pyramids. In the sixth O2- site, O2- is bonded in a 2-coordinate geometry to one K1+, one Na1+, one Cu2+, and one Si4+ atom. In the seventh O2- site, O2- is bonded in a 2-coordinate geometry to two equivalent K1+ and two Si4+ atoms. In the eighth O2- site, O2- is bonded in a 4-coordinate geometry to one K1+, one Na1+, one Cu2+, and one Si4+ atom. In the ninth O2- site, O2- is bonded in a 2-coordinate geometry to one K1+, one Na1+, and two Si4+ atoms. In the tenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one K1+ and two Si4+ atoms.},
doi = {10.17188/1266919},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {7}
}