skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on FePO4 by Materials Project

Abstract

FePO4 is quartz (alpha)-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. there are three inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to four O2- atoms to form FeO4 tetrahedra that share corners with four PO4 tetrahedra. There is three shorter (1.88 Å) and one longer (1.89 Å) Fe–O bond length. In the second Fe3+ site, Fe3+ is bonded to four O2- atoms to form FeO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.87–1.89 Å. In the third Fe3+ site, Fe3+ is bonded to four O2- atoms to form FeO4 tetrahedra that share corners with four PO4 tetrahedra. There is two shorter (1.88 Å) and two longer (1.89 Å) Fe–O bond length. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO4 tetrahedra. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO4 tetrahedra. There ismore » two shorter (1.54 Å) and two longer (1.55 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO4 tetrahedra. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. There are twelve inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom.« less

Authors:
Contributors:
Researcher:
Publication Date:
Other Number(s):
mp-504149
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Product Type:
Dataset
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; FePO4; Fe-O-P
OSTI Identifier:
1208598
DOI:
10.17188/1208598

Citation Formats

Persson, Kristin, and Project, Materials. Materials Data on FePO4 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1208598.
Persson, Kristin, & Project, Materials. Materials Data on FePO4 by Materials Project. United States. doi:10.17188/1208598.
Persson, Kristin, and Project, Materials. 2020. "Materials Data on FePO4 by Materials Project". United States. doi:10.17188/1208598. https://www.osti.gov/servlets/purl/1208598. Pub date:Wed Apr 29 00:00:00 EDT 2020
@article{osti_1208598,
title = {Materials Data on FePO4 by Materials Project},
author = {Persson, Kristin and Project, Materials},
abstractNote = {FePO4 is quartz (alpha)-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. there are three inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to four O2- atoms to form FeO4 tetrahedra that share corners with four PO4 tetrahedra. There is three shorter (1.88 Å) and one longer (1.89 Å) Fe–O bond length. In the second Fe3+ site, Fe3+ is bonded to four O2- atoms to form FeO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.87–1.89 Å. In the third Fe3+ site, Fe3+ is bonded to four O2- atoms to form FeO4 tetrahedra that share corners with four PO4 tetrahedra. There is two shorter (1.88 Å) and two longer (1.89 Å) Fe–O bond length. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO4 tetrahedra. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO4 tetrahedra. There is two shorter (1.54 Å) and two longer (1.55 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO4 tetrahedra. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. There are twelve inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom.},
doi = {10.17188/1208598},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}

Dataset:

Save / Share: