skip to main content

Title: Hurricane Maria Puerto Rico Landsat Analysis

Hurricane Maria made landfall as a strong Category 4 storm in southeast Puerto Rico on September 20th, 2018. The powerful storm traversed the island in a northwesterly direction causing widespread destruction. This study focused on a rapid assessment of Hurricane Marias impact to Puerto Ricos forests. Calibrated and corrected Landsat 8 image composites for the entire island were generated using Google Earth Engine for a comparable pre-Maria and post-Maria time period that accounted for phenology. Spectral mixture analysis (SMA) using image-derived end members was carried out on both composites to calculate the change in the non-photosynthetic vegetation (Delta-NPV) spectral response, a metric that quantifies the increased fraction of exposed wood and surface litter associated with tree mortality and crown damage from the storm. Hurricane simulations were also conducted using the Weather Research and Forecasting (WRF) regional climate model to estimate wind speeds associated with forest disturbance. Dramatic changes in forest structure across the entire island were evident from pre- and post-Maria composited Landsat 8 images. A Delta-NPV map for only the forested pixels illustrated significant spatial variability in disturbance, with patterns that associated with factors such as slope, aspect and elevation. An initial order-of-magnitude impact estimate based on previous workmore » indicated that Hurricane Maria may have caused mortality and severe damage to 23-31 million trees. Additional field work and image analyses are required to further detail the impact of Hurricane Maria to Puerto Rico forests. A minor update to this dataset was posted on April 20, 2018. The previous version is being retired. If you need access to the prior version of the data, email ngee-tropics-archive@lbl.gov. « less
Authors:
;  [1] ;  [1] ; ; ; ; ;
  1. LBNL
Publication Date:
Report Number(s):
NGT0084
DOE Contract Number:
DE-AC02-05CH11231
Product Type:
Dataset
Research Org(s):
Next-Generation Ecosystem Experiments Tropics; UC Berkeley, LBNL
Sponsoring Org:
Department of Energy, Office of Science, Office of Biological and Environmental Research
Resource Relation:
Related Information: Feng Y, Negron-Juarez RI, Patricola CM, Collins WD, Uriarte M, Hall JS, Clinton N, Chambers JQ. (2018) Rapid remote sensing assessment of impacts from Hurricane Maria on forests of Puerto Rico. PeerJ Preprints 6:e26597v1 https://doi.org/10.7287/peerj.preprints.26597v1
Subject:
54 ENVIRONMENTAL SCIENCES
Related Identifiers:
OSTI Identifier:
1419953
  1. The Next-Generation Ecosystem Experiments–Tropics, or NGEE-Tropics, is a ten-year, multi-institutional project aiming to fill the critical gaps in knowledge of tropical forest-climate system interactions. The overarching goal of NGEE-Tropics is to develop a predictive understanding of how tropical forest carbon balance and climate system feedbacks will respond to changing environmental drivers over the 21st Century. NGEE-Tropics’ grand deliverable is a representative, process-rich tropical forest ecosystem model, extending from bedrock to the top of the vegetative canopy-atmosphere interface, in which the evolution and feedbacks of tropical ecosystems in a changing climate can be modeled at the scale and resolution of amore » next-generation Earth System Model grid cell (~10 x 10 km2 grid size). « less
No associated Collections found.
  1. This is the AmeriFlux version of the carbon flux data for the site US-Skr Shark River Slough (Tower SRS-6) Everglades. Site Description - The Florida Everglades Shark River Slough Mangrove Forest site is located along the Shark River in the western region of Everglades Nationalmore » Park. Also referred to as site SRS6 of the Florida Coastal Everglades LTER program, freshwater in the mangrove riverine floods the forest floor under a meter of water twice per day. Transgressive discharge of freshwater from the Shark river follows annual rainfall distributions between the wet and dry seasons. Hurricane Wilma struck the site in October of 2005 causing significant damage. The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar irradiance transfer increased. 2007- 2008 measurements indicate that these factors led to an decline in both annual -NEE and daily NEE from pre-hurricane conditions in 2004-2005. « less
  2. This is the AmeriFlux version of the carbon flux data for the site US-UMd UMBS Disturbance. Site Description - The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). In Spring 2008,more » every aspen and birch tree (>6,700, ~35% canopy LAI), the dominant early successional trees, were girdled over 39 ha of the FASET treatment plot to stimulate a disturbance that will move the forest into a later successional stage, dominated by maples, oaks, and white pine. This treatment caused aspen and birch mortality within 2 - 3 years. As a result of the changed canopy structure, there is a divergence in net ecosystem exchange between the control plot (enhanced carbon uptake) and the treatment plot (reduced carbon uptake). « less
  3. This is the AmeriFlux version of the carbon flux data for the site CA-NS8 UCI-2003 burn site. Site Description - The UCI-2003 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada.more » The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires. « less
  4. This is the AmeriFlux version of the carbon flux data for the site CA-NS1 UCI-1850 burn site. Site Description - The UCI-1850 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada.more » The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires. « less
  5. This is the AmeriFlux version of the carbon flux data for the site CA-NS2 UCI-1930 burn site. Site Description - The UCI-1930 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada.more » The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires. « less