skip to main content

Title: Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli

This data describes rare earth element adsorption onto E. coli cells engineered to express a lanthanide binding tag (LBT). We used a Great Salt Lake synthetic solution as the background matrix with Tb added to 1-10,000 ppb, concentrations much lower than the competing ions present. Our results showed that Tb binds to LBT, even in the presence of high concentrations of competing metals. We also tested REE adsorption at elevated temperatures (up to 100 degrees Celsius), and observed that Tb adsorption increases with temperature of to 70 degrees Celsius, and then remains constant until 100 degrees Celsius. Data analyses were performed using an ICP-MS at UCSC.
Authors:
; ;
Publication Date:
Report Number(s):
957
DOE Contract Number:
LLNL FY17 AOP 2.5.1.12
Product Type:
Dataset
Research Org(s):
DOE Geothermal Data Repository; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (EE-2C)
Subject:
15 Geothermal Energy; geothermal; energy; Rare earth element; adsorption; geofluid; REE; brine; biomining; e. coli; great salt lake; brine study
OSTI Identifier:
1377900

Jiao, Yongqin, Park, Dan, and Brewer, Aaron. Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli. United States: N. p., Web. doi:10.15121/1377900.
Jiao, Yongqin, Park, Dan, & Brewer, Aaron. Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli. United States. doi:10.15121/1377900.
Jiao, Yongqin, Park, Dan, and Brewer, Aaron. 2017. "Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli". United States. doi:10.15121/1377900. https://www.osti.gov/servlets/purl/1377900.
@misc{osti_1377900,
title = {Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli},
author = {Jiao, Yongqin and Park, Dan and Brewer, Aaron},
abstractNote = {This data describes rare earth element adsorption onto E. coli cells engineered to express a lanthanide binding tag (LBT). We used a Great Salt Lake synthetic solution as the background matrix with Tb added to 1-10,000 ppb, concentrations much lower than the competing ions present. Our results showed that Tb binds to LBT, even in the presence of high concentrations of competing metals. We also tested REE adsorption at elevated temperatures (up to 100 degrees Celsius), and observed that Tb adsorption increases with temperature of to 70 degrees Celsius, and then remains constant until 100 degrees Celsius. Data analyses were performed using an ICP-MS at UCSC.},
doi = {10.15121/1377900},
year = {2017},
month = {6} }
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.