DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Y(PO3)3 by Materials Project

Abstract

Y(PO3)3 crystallizes in the monoclinic Cc space group. The structure is three-dimensional. Y3+ is bonded to six O2- atoms to form YO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Y–O bond distances ranging from 2.23–2.30 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent YO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 25–29°. There are a spread of P–O bond distances ranging from 1.50–1.60 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent YO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 15–17°. There is two shorter (1.50 Å) and two longer (1.60 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent YO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 27–32°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å.more » There are nine inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to two P5+ atoms. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to two P5+ atoms. In the fourth O2- site, O2- is bonded in a linear geometry to two P5+ atoms. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted linear geometry to one Y3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a distorted linear geometry to one Y3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom.« less

Authors:
Publication Date:
Other Number(s):
mp-1020797
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Y(PO3)3; O-P-Y
OSTI Identifier:
1351523
DOI:
https://doi.org/10.17188/1351523

Citation Formats

The Materials Project. Materials Data on Y(PO3)3 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1351523.
The Materials Project. Materials Data on Y(PO3)3 by Materials Project. United States. doi:https://doi.org/10.17188/1351523
The Materials Project. 2020. "Materials Data on Y(PO3)3 by Materials Project". United States. doi:https://doi.org/10.17188/1351523. https://www.osti.gov/servlets/purl/1351523. Pub date:Mon Jul 20 00:00:00 EDT 2020
@article{osti_1351523,
title = {Materials Data on Y(PO3)3 by Materials Project},
author = {The Materials Project},
abstractNote = {Y(PO3)3 crystallizes in the monoclinic Cc space group. The structure is three-dimensional. Y3+ is bonded to six O2- atoms to form YO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Y–O bond distances ranging from 2.23–2.30 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent YO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 25–29°. There are a spread of P–O bond distances ranging from 1.50–1.60 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent YO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 15–17°. There is two shorter (1.50 Å) and two longer (1.60 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent YO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 27–32°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. There are nine inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to two P5+ atoms. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to two P5+ atoms. In the fourth O2- site, O2- is bonded in a linear geometry to two P5+ atoms. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted linear geometry to one Y3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a distorted linear geometry to one Y3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Y3+ and one P5+ atom.},
doi = {10.17188/1351523},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jul 20 00:00:00 EDT 2020},
month = {Mon Jul 20 00:00:00 EDT 2020}
}