DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li5Cu(PO4)2 by Materials Project

Abstract

Li5Cu(PO4)2 is beta beryllia-derived structured and crystallizes in the monoclinic Pm space group. The structure is three-dimensional. there are three inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra and corners with eight LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.99–2.07 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.92–2.00 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.97–2.01 Å. Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with four PO4 tetrahedra and corners with eight LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.08–2.18 Å. There are two inequivalent P5+ sites.more » In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra and corners with ten LiO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.55–1.57 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra and corners with ten LiO4 tetrahedra. All P–O bond lengths are 1.56 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and one P5+ atom to form distorted corner-sharing OLi3P tetrahedra. In the second O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the third O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the fourth O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the fifth O2- site, O2- is bonded to two equivalent Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the sixth O2- site, O2- is bonded in a 4-coordinate geometry to two equivalent Li1+, one Cu1+, and one P5+ atom.« less

Authors:
Publication Date:
Other Number(s):
mp-755821
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li5Cu(PO4)2; Cu-Li-O-P
OSTI Identifier:
1290236
DOI:
https://doi.org/10.17188/1290236

Citation Formats

The Materials Project. Materials Data on Li5Cu(PO4)2 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1290236.
The Materials Project. Materials Data on Li5Cu(PO4)2 by Materials Project. United States. doi:https://doi.org/10.17188/1290236
The Materials Project. 2020. "Materials Data on Li5Cu(PO4)2 by Materials Project". United States. doi:https://doi.org/10.17188/1290236. https://www.osti.gov/servlets/purl/1290236. Pub date:Mon May 04 00:00:00 EDT 2020
@article{osti_1290236,
title = {Materials Data on Li5Cu(PO4)2 by Materials Project},
author = {The Materials Project},
abstractNote = {Li5Cu(PO4)2 is beta beryllia-derived structured and crystallizes in the monoclinic Pm space group. The structure is three-dimensional. there are three inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra and corners with eight LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.99–2.07 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.92–2.00 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra, corners with four PO4 tetrahedra, and corners with six LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.97–2.01 Å. Cu1+ is bonded to four O2- atoms to form CuO4 tetrahedra that share corners with four PO4 tetrahedra and corners with eight LiO4 tetrahedra. There are a spread of Cu–O bond distances ranging from 2.08–2.18 Å. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra and corners with ten LiO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.55–1.57 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent CuO4 tetrahedra and corners with ten LiO4 tetrahedra. All P–O bond lengths are 1.56 Å. There are six inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and one P5+ atom to form distorted corner-sharing OLi3P tetrahedra. In the second O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the third O2- site, O2- is bonded to two Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the fourth O2- site, O2- is bonded to three Li1+ and one P5+ atom to form corner-sharing OLi3P tetrahedra. In the fifth O2- site, O2- is bonded to two equivalent Li1+, one Cu1+, and one P5+ atom to form distorted corner-sharing OLi2CuP tetrahedra. In the sixth O2- site, O2- is bonded in a 4-coordinate geometry to two equivalent Li1+, one Cu1+, and one P5+ atom.},
doi = {10.17188/1290236},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 04 00:00:00 EDT 2020},
month = {Mon May 04 00:00:00 EDT 2020}
}