skip to main content

Title: Frontier Observatory for Research in Geothermal Energy: Fallon, Nevada

The data is associated to the Fallon FORGE project and includes mudlogs for all wells used to characterize the subsurface, as wells as gravity, magnetotelluric, earthquake seismicity, and temperature data from the Navy GPO and Ormat. Also included are geologic maps from the USGS and Nevada Bureau of Mines and Geology for the Fallon, NV area.
Authors:
Publication Date:
Report Number(s):
748
DOE Contract Number:
EE0007160
Product Type:
Dataset
Research Org(s):
DOE Geothermal Data Repository; Sandia National Laboratories
Collaborations:
Sandia National Laboratories
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (EE-2C)
Subject:
15 Geothermal Energy; geothermal; EGS; Fallon; FORGE; Carson Sink; Basin and Range; Temperature; Well; Nevada; Mudlog; Geologic Map; NV; temperature; 17-16; well; drilling; mudlog; 13-36; 35A-11; boundary; lease; 86-15; 34-33; 78-36; DEM; Neada; Stewart and Carlson 1978; Hinz et. al. 2011; Bell et. al. 2010; Bell and House 2010; Maurer and Welch 2001; NDOT; Highways; gravity; MT; geologic map; seismicity; Flow test; FOH-3; earthquakes; 61-36; Pressure; survey; borehole; dro; gamma ray; acoustilog; x-multipole array; 47A-11; well drilling; 51A-20; 56A-14; 58A-9; 14-1; 62-15; flow test; 84-31; 82-36; 86-25; 86A-15; Semblance; Gamma; gamma; semblance; Heat Flow; FOH 3; Seismic; Navy GPO; Radiogenic Heat Measurements; Temperature Gradient; Magnetotelluric; 88-24
OSTI Identifier:
1287550
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.
  1. Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) providesmore » an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal . « less
  2. The data is associated to the Fallon FORGE project and includes mudlogs for all wells used to characterize the subsurface, as wells as gravity, magnetotelluric, earthquake seismicity, and temperature data from the Navy GPO and Ormat. Also included are geologic maps from the USGS andmore » Nevada Bureau of Mines and Geology for the Fallon, NV area. « less
  3. Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California,more » southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di... « less
  4. Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) providesmore » an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which... « less
  5. Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilationmore » tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit... « less