skip to main content

Title: Sustainable self-propping shear zones in EGS: Chlorite, Illite, and Biotite Rates and Report

Spreadsheet containing chlorite, illite, and biotite rate data and rate equations that can be used in reactive transport simulations. Submission includes a report on the development of the rate laws.
Publication Date:
Report Number(s):
DOE Contract Number:
Product Type:
Research Org(s):
DOE Geothermal Data Repository; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Lawrence Livermore National Laboratory
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (EE-2C)
15 Geothermal Energy; geothermal; chlorite; illite; biotite; rate equations; reactive transport
OSTI Identifier:
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.
  1. Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report updated rate laws for chloritemore » (Carroll and Smith 2013), biotite (Carroll and Smith, 2015), illite (Carroll and Smith, 2014), and for muscovite. Also included is a spreadsheet with rate data and rate equations for use in reactive transport simulators. « less
  2. We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated inmore » this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR. The rate equation fills a data gap in geothemal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems. « less
  3. Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
  4. The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting ratemore » equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones. « less
  5. Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year ofmore » 2014 is used but not reported. Date the data set was last modified: 02/02/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 2% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center. « less