skip to main content

Title: Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test

The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability. The GRC uses a combined gearbox testing, modeling, and analysis approach disseminating data and results to the industry and facilitating improvement of gearbox reliability. This test data describes the tests of GRC gearbox 2 in the National Wind Technology Center dynamometer and documents any modifications to the original test plan. It serves as a guide to interpret the publicly released data sets with brief analyses to illustrate the data. TDMS viewer and Solidworks software required to view data files.
Authors:
;
Publication Date:
Report Number(s):
45
DOE Contract Number:
FY16 AOP 30231
Product Type:
Dataset
Research Org(s):
National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory
Collaborations:
National Renewable Energy Laboratory
Sponsoring Org:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
Subject:
17 WIND ENERGY; NREL; energy; data; Gearbox Reliability Collaborative; GRC; NWTC; Colorado; Boulder; Turbines; wind energy; Gearbox; Reiliability; Testing; Modeling; Analysis NREL; Dynamometer; bearing loads
OSTI Identifier:
1254154
No associated Projects found.
No associated Collections found.
  1. The GRC uses a combined gearbox testing, modeling, and analysis approach disseminating data and results to the industry and facilitating improvement of gearbox reliability. This test data describes the tests of GRC gearbox 3 in the National Wind Technology Center dynamometer and documents any modificationsmore » to the original test plan. It serves as a guide to interpret the publicly released data sets with brief analyses to illustrate the data. TDMS viewer and Solidworks software required to view data files. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability. « less
  2. A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define themore » amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities. « less
  3. Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member ofmore » SolarTAC, the U.S. Department of Energy National Renewable Energy Laboratory (NMREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar powered projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance. « less
  4. This research focused on accelerating solar photovoltaic (PV) diffusion by collecting new market data and developing predictive modeling frameworks to test and refine understandings of household level motivations for adopting solar. Three different household-level surveys were fielded: one for households who had installed PV onmore » their current home or had signed a contract to do so (the Adopter survey), one for households that had seriously considered PV but had not installed it (the Considerer survey), and one for the general population who did not have PV on their current home (the general population survey or GPS). Survey respondents were from four U.S. states: New Jersey, New York, Arizona, and California. Details of recruiting and sampling are documented below. Research projects on residential PV adoption often collect data only from PV adopters or from the general population. One of the innovations of this project was the three-pronged household survey data collection. By collecting similar data from three fairly different "statuses" with respect to adoption, the surveys provide a basis for understanding how those who do not have rooftop PV differ from those who have, for how and why people do (or don't) transition from not having to having rooftop PV on their home, and for understanding the characteristics and viewpoints of households who have scarcely, or not at all, entered the "PV consideration" track. All three surveys covered single-family owner-occupied households in each of the four target states used in the project -- Arizona, California, New Jersey, and New York - allowing a comparative approach to understanding how the factors that affect PV adoption vary by geography and policy conditions. The General Population and Considerer surveys provide a basis for understanding opinions about and interest in solar, and how these relate to household demographics and other conditions. Paired with the Adopter survey, they also provide data for understanding how those who do not have rooftop PV differ from those who have, and for how and why people do (or don't) transition from not having to having rooftop PV on their home. The Adopter survey questions were designed to capture a broad range of information on what motivates and impedes households to install rooftop PV, as well as the details and timing of the decision and installation. Survey instrument development drew from existing PV adoption survey instruments, PV adoption literature, and research team experience, as well as from past work on household interest in energy efficiency, environmental attitudes, purchasing tendencies, and related knowledge. Early interviews and discussions with installers and others in the PV industry were also taken into consideration. « less
  5. The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measuremore » the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL. « less