skip to main content

Title: Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

This Modeling Archive is in support of an NGEE Arctic publication available at doi:10.5194/tc-10-341-2016. This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.
; ; ; ; ; ;
Publication Date:
DOE Contract Number:
Product Type:
Research Org(s):
Next Generation Ecosystems Experiment - Arctic, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
54 Environmental Sciences; ngee; ngee arctic; soil property uncertainty; permafrost projections; active layer thickness
OSTI Identifier:
No associated Projects found.
No associated Collections found.
  1. This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soilmore » is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included. « less
  2. This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundramore » create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies. « less
  3. This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at doi:10.5194/gmd-9-927-2016. The purpose is to document the simulations to allow verification, reproducibility, and follow-up studies. This dataset contains shell scripts to create the CLM-PFLOTRAN cases, specific input filesmore » for PFLOTRAN and CLM, outputs, and python scripts to make the figures using the outputs in the publication. Through these results, we demonstrate that CLM-PFLOTRAN can approximately reproduce CLM results in selected cases for the Arctic, temperate and tropic sites. In addition, the new framework facilitates mechanistic representations of soil biogeochemistry processes in the land surface model. « less
  4. The in-situ soil moisture and thaw depth measurements provided in this dataset were collected coincident with airborne overflights of L- and P-band SAR instruments at the NGEE Arctic study site near Barrow, on the North Slope, and at the three study sites on the Sewardmore » Peninsula, Alaska. Field measurements and flights were conducted during the summer of 2017 as a collaboration between the NASA ABoVE Project's Airborne SAR Campaign and the NGEE Arctic Project. ABoVE protocols for establishing field measurement plots were followed. « less
  5. The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain,more » it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region. « less