skip to main content

Title: ARM: Droplet number concentration

Droplet number concentration
Authors:
;
Publication Date:
DOE Contract Number:
DE-AC05-00OR22725
Product Type:
Dataset
Research Org(s):
Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Subject:
54 Environmental Sciences; Atmospheric pressure; Atmospheric temperature; Cloud optical depth; Cloud particle number concentration; Liquid water path
OSTI Identifier:
1179820
  1. ARM focuses on obtaining continuous measurements—supplemented by field campaigns—and providing data products that promote the advancement of climate models. ARM data include routine data products, value-added products (VAPs), field campaign data, complementary external data products from collaborating programs, and data contributed by ARM principal investigators for use by the scientific community. Data quality reports, graphical displays of data availability/quality, and data plots are also available from the ARM Data Center. Serving users worldwide, the ARM Data Center collects and archives approximately 20 terabytes of data per month. Datastreams are generally available for download within 48 hours.
No associated Collections found.
  1. Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo asmore » smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. « less
  2. Best estimates of the size distributions of supercooled water droplets and ice crystals for mixed-phase clouds measured during M-PACE for spiral ascents/descents over Barrow and Oliktok Point, and for ramped ascents/descents between Barrow and Oliktok Point. Our best estimates of the bulk microphysical properties suchmore » as ice water content (IWC), liquid water content (LWC), effective radius of ice crystals defined following Fu (1996) (rei), effective radius of supercooled water droplets (rew), total ice crystal number concentration (Ni), total water droplet number concentration (Nw) and total condensed water content (CWC), are also provided. The quantities were derived from the FSSP, 1DC, 2DC, HVPS and the CVI. Note HVPS data are only available after 10 Oct 2004 and some procedures have been developed to account for the missing data. « less
  3. The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, andmore » evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files. « less
  4. These files were generated by Greg McFarquhar and Robert Jackson at the University of Illinois. Please contact mcfarq@atmos.uiuc.edu or rjackso2@atmos.uiuc.edu for more information or for assistance in interpreting the content of these files. We highly recommend that anyone wishing to use these files do somore » in a collaborative endeavor and we welcome queries and opportunities for collaboration. There are caveats associated with the use of the data which are difficult to thoroughly document and not all products for all time periods have been thoroughly examined. This is a value added data set of the best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter during RACORO. These files contain best estimates of liquid size distributions N(D) in terms of droplet diameter D, liquid water content LWC, extinction of liquid drops beta, effective radius of cloud drops (re), total number concentration of droplets NT, and radar reflectivity factor Z at 1 second resolution. « less
  5. The SP2 provides information on the amounts of rBC (refractory black carbon) and of other, non-refractory substances associated with individual rBC containing particles by simultaneously measuring the scattering and incandescence signals of such particles that are directed through the cavity of a 1064 nm Nd:YAGmore » laser. (refractory Black Carbon) rBC mixing ratio (ng/Kg) and number size distribution time series collected during the DOE-ARM sponsored ACME-V field campaign held from June 1 to September 15, 2015 rBC mixing ratio is reported at STP conditions Time resolution: 10 sec Uncertainty: ~ 30% SP2 Unit: 25 Location: Deadhorse, AK Location: N 70-degree 11' 41'' - W 148-degress. 27' 55'' SP2_dateTime: UTC rBC concentration is in units of ng/Kg - dry air. Mass Equivalent Diameters [MED] used for size distribution (SP2_min; SP2_geo; and SP2_max) are in units of micrometers dN/dlogDp counts for a given size bin (SP2_geo) listed as 'SP2_cnts_0 - SP2_cnts_199' and are in units of #/cc. Column naming convention: 'SP2_cnts_X' are the number of particles in bin number _X. , where _X is the row number within the 'SP2_geo' size bin column that contains the mass equivalent diameter (e.g., SP2_cnts_0 = 0.01 microns; SP2_cnts_10 = 0.060 microns, etc.). The dN/dlogDp data is time-resolved where a given row is associated with the timestamp for that row. Note that the rBC column length is one field shorter than the SP2_datetime column. Last time field is not relevant to the rBC time series (see comment below on length of SP2_datetime column) Lengths for SP2_max; SP2_min; SP2_geo are one field longer then the number of SP2_cnts_XX columns . This is to provide bounds for image plots (if desired). Length for SP2_datetime is one field longer than that length of the SP2_cnts_XX columns This is to provide bounds for image plots (if desired) SP2 Calibration: Fullerene soot with corrrection applied for particle density as a function of particle size. No correction for OC content in Fullerene (recent study on SP2 sensitivity to differing black carbon types reports that non-refractory material content for fullerene soot is about 20%). « less