skip to main content

Title: Vaisala CL51 ceilometer

Vaisala CL51 ceilometer providing attenuated backscatter coefficients and cloud base heights.
Publication Date:
DOE Contract Number:
Product Type:
Research Org(s):
Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
54 Environmental Sciences; attenuated backscatter coefficient
OSTI Identifier:
  1. ARM focuses on obtaining continuous measurements—supplemented by field campaigns—and providing data products that promote the advancement of climate models. ARM data include routine data products, value-added products (VAPs), field campaign data, complementary external data products from collaborating programs, and data contributed by ARM principal investigators for use by the scientific community. Data quality reports, graphical displays of data availability/quality, and data plots are also available from the ARM Data Center. Serving users worldwide, the ARM Data Center collects and archives approximately 20 terabytes of data per month. Datastreams are generally available for download within 48 hours.
No associated Collections found.
  1. Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range
  2. Corrections for inaccuracy in Vaisala radiosonde RH measurements have been applied to ARM SGP radiosonde soundings. The magnitude of the corrections can vary considerably between soundings. The radiosonde measurement accuracy, and therefore the correction magnitude, is a function of atmospheric conditions, mainly T, RH, andmore » dRH/dt (humidity gradient). The corrections are also very sensitive to the RH sensor type, and there are 3 Vaisala sensor types represented in this dataset (RS80-H, RS90, and RS92). Depending on the sensor type and the radiosonde production date, one or more of the following three corrections were applied to the RH data: Temperature-Dependence correction (TD), Contamination-Dry Bias correction (C), Time Lag correction (TL). The estimated absolute accuracy of NIGHTTIME corrected and uncorrected Vaisala RH measurements, as determined by comparison to simultaneous reference-quality measurements from Holger Voemel's (CU/CIRES) cryogenic frostpoint hygrometer (CFH), is given by Miloshevich et al. (2006). « less
  3. The data set contains physical retrievals of PWV and cloud LWP retrieved from MWR3C measurements during the MAGIC campaign. Additional data used in the retrieval process include radiosondes and ceilometer. The retrieval is based on an optimal estimation technique that starts from a first guessmore » and iteratively repeats the forward model calculations until a predefined convergence criterion is satisfied. The first guess is a vector of [PWV,LWP] from the neural network retrieval fields in the netcdf file. When convergence is achieved the 'a posteriori' covariance is computed and its square root is expressed in the file as the retrieval 1-sigma uncertainty. The closest radiosonde profile is used for the radiative transfer calculations and ceilometer data are used to constrain the cloud base height. The RMS error between the brightness temperatures is computed at the last iterations as a consistency check and is written in the last column of the output file. « less
  4. Belfort Laser Ceilometer (BLC): 30-s avgs of cloud base heights at up to 3 levels
  5. Belfort Laser Ceilometer (BLC): profiles