skip to main content

Title: Hydraulic Conductivity Measurements Barrow 2014

Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivitymore » calculations were computed using methodology of Das et al., 1985. « less
; ; ;
Publication Date:
DOE Contract Number:
Product Type:
Research Org(s):
Next Generation Ecosystems Experiment - Arctic, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
54 Environmental Sciences; ngee; ngee-arctic; Hydraulic Conductivity; Hydrology; Falling Head Test
OSTI Identifier:
No associated Projects found.
No associated Collections found.
  1. Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1more » meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core. « less
  2. This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 daymore » periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses. « less
  3. This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Deep Peat Heating (DPH) study. Cores were collected during three sampling events: 03 June 2014, 09 September 2014, and 16 Junemore » 2015. Two cores were extracted from hollow locations in each of the 10 experimental plots (4, 6, 8, 10, 11, 13, 16, 17, 19, and 20). Cores were partitioned into samples at 11 depth increments: 0-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150, 150-175, and 175-200 cm below surface of the hollow. « less
  4. Carbon flux data are reported as Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange (GEE), Ecosystem Respiration (ER), and Methane (CH4) flux. Measurements were made at 82 plots across various polygon geomorphic classes at research sites on the Barrow Environmental Observatory (BEO), the Biocomplexity Experiment sitemore » on the BEO, and the International Biological Program (IBP) site a little west of the BEO. This product is a compilation of data from 27 plots as presented in Lara et al. (2012), data from six plots presented in Olivas et al. (2010); and from 49 plots described in (Lara et al. 2014). Measurements were made during the peak of the growing seasons during 2006 to 2010. At each of the measurement plots (except Olivas et al., 2010) four different thicknesses of shade cloth were used to generate CO2 light response curves. Light response curves were used to normalize photosynthetically active radiation that is diurnally variable to a peak growing season average ~400 umolm-2sec-1. At the Olivas et al. (2010) plots, diurnal patterns were characterized by repeated sampling. CO2 measurements were made using a closed-chamber photosynthesis system and CH4 measurements were made using a photo-acoustic multi-gas analyzer. In addition, plot-level measurements for thaw depth (TD), water table depth (WTD), leaf area index (LAI), and normalized difference vegetation index (NDVI) are summarized by geomorphic polygon type. « less
  5. In the 1960s, thermonuclear bomb tests released significant pulses of radioactive 14C into the atmosphere. This major perturbation allowed scientists to study the dynamics of the global carbon cycle by measuring and observing rates of isotopic exchange. The Radiological Dating Laboratory at the Norwegian Institutemore » of Technology performed 14C measurements in atmospheric CO2 from 1962 to 1993 at a network of ground stations in the Northern and Southern hemispheres. These measurements were supplemented during 1965 with high-altitude (9-12.6 km) air samples collected using aircraft from the Norwegian Air Force. The resulting database, coupled with other 14C data sets, provides a greater understanding of the dynamic carbon reservoir and a crude picture of anomalous sources and sinks at different geographical latitudes. This database is outstanding for its inclusion of early 14C measurements, broad spatial coverage of sampling, consistency of sampling method, and 14C calculation results corrected for isotopic fractionation and radioactive decay. This database replaces previous versions published by the authors and the Radiological Dating Laboratory. Fourteen stations spanning latitudes from Spitsbergen (78° N) to Madagascar (21° S) were used for sampling during the lifetime of the Norwegian program. Some of the stations have data for only a brief period, while others have measurements through 1993. Sampling stations subject to local industrial CO2 contamination were avoided. The sites have sufficient separation to describe the latitudinal distribution of 14C in atmospheric models. The sampling procedure for all the surface (10-2400 m asl) 14C measurements in this database consisted of quantitative absorption of atmospheric CO2 in carbonate-free 0.5 N NaOH solution. The 14C measurements were made in a CO2 proportional counter and calculated (14C) as per mil excess above the normal 14C level defined by the US National Institute of Standards and Technology (NIST). Atmospheric 14C content is finally expressed as 14C, which is the relative deviation of the measured 14C activity from the NIST oxalic acid standard activity, after correction for isotopic fractionation and radioactive decay related to age. The data are organized by sampling station, and each record of the database contains the sampling dates; values for 14C excess (14C) relative to the NIST standard, fractionation 13C (13C) relative to the Pee Dee Belemnite (PDB) standard, and corrected 14C ( 14C) excess; and the standard deviation for 14C. The 14C calculation results presented here are thus corrected for isotopic fractionation and radioactive decay, and constitute the final product of a research effort that has spanned three decades. The 14C station data show a sharp increase in tropospheric radiocarbon levels in the early 1960s and then a decline after the majority of nuclear tests came to an end on August 5, 1963 (Test Ban Treaty). The sharp peaks in tropospheric radiocarbon in the early 1960s are more pronounced in the Northern Hemisphere, reflecting the location of most atomic weapons tests. The measurements show large seasonal variations in the 14C level during the early 1960s mainly as a result of springtime transport of bomb 14C from the stratosphere. During the 1970s, the seasonal variations are smaller and due partly to seasonal variations in CO2 from fossil-fuel emissions. The rate of decrease of atmospheric radiocarbon provides a check on the exchange constants of the atmosphere and ocean. This report and all data it describes are available from the Carbon Dioxide Information Analysis Center (CDIAC) without charge. The Nydal and Lövseth atmospheric 14C database comprises 21 data files totaling 0.2 megabytes in size. The following report describes the sampling methods and analysis. In addition, the report includes a complete discussion of CDIAC's data-processing efforts, the contents and format of the data files, and a reprint of a Nydal and Lövseth journal article. « less