skip to main content

Title: Combined Retrieval, Microphysical Retrievals and Heating Rates

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.
Authors:
Publication Date:
DOE Contract Number:
DE-AC05-00OR22725
Product Type:
Dataset
Research Org(s):
Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Collaborations:
PNL, BNL,ANL,ORNL
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Subject:
54 Environmental Sciences; Cloud optical depth; Cloud base height; Cloud top height; Ice water path; Ice water content; Longwave broadband downwelling irradiance; Longwave broadband upwelling irradiance; Shortwave broadband total downwelling irradiance; Shortwave broadband total upwelling irradiance; Liquid water content; Liquid water path; Radiative heating rate
OSTI Identifier:
1169498
  1. ARM focuses on obtaining continuous measurements—supplemented by field campaigns—and providing data products that promote the advancement of climate models. ARM data include routine data products, value-added products (VAPs), field campaign data, complementary external data products from collaborating programs, and data contributed by ARM principal investigators for use by the scientific community. Data quality reports, graphical displays of data availability/quality, and data plots are also available from the ARM Data Center. Serving users worldwide, the ARM Data Center collects and archives approximately 20 terabytes of data per month. Datastreams are generally available for download within 48 hours.
No associated Collections found.
  1. The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, andmore » evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files. « less
  2. A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region.more » The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs. « less
  3. These multi-wavelength lidar data were collected during the Combined HSRL and Raman lidar Measurement Study (CHARMS) IOP that occurred during July through September 2015 at SGP. During CHARMS the University of Wisconsin HSRL was located at SGP and acquired aerosol backscatter profiles at 532 nmmore » and 1064 nm and aerosol backscatter, extinction, and depolarization profiles at 532 nm. The HSRL aerosol profiles, when combined with the aerosol backscatter and extinction profiles (355 nm) collected by the SGP Raman lidar, provide a suite of three aerosol backscatter (355, 532, 1064 nm) and two aerosol extinction (355, 532 nm) profiles for use in advanced aerosol microphysical retrievals. The data files in this PI product contain this suite of aerosol backscatter (355, 532, 1064), extinction (355, 532 nm), and depolarization (532 nm) profiles. « less
  4. Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information includemore » raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities. « less
  5. The data set contains physical retrievals of PWV and cloud LWP retrieved from MWR3C measurements during the MAGIC campaign. Additional data used in the retrieval process include radiosondes and ceilometer. The retrieval is based on an optimal estimation technique that starts from a first guessmore » and iteratively repeats the forward model calculations until a predefined convergence criterion is satisfied. The first guess is a vector of [PWV,LWP] from the neural network retrieval fields in the netcdf file. When convergence is achieved the 'a posteriori' covariance is computed and its square root is expressed in the file as the retrieval 1-sigma uncertainty. The closest radiosonde profile is used for the radiative transfer calculations and ceilometer data are used to constrain the cloud base height. The RMS error between the brightness temperatures is computed at the last iterations as a consistency check and is written in the last column of the output file. « less