skip to main content

Title: In Situ Leaf Level Gas Exchange Measurements, Barrow, Alaska, 2013

Survey measurements of photosynthetic rate and stomatal conductance together with carbon dioxide concentration, temperature, PAR, and relative humidity for 8 species on the BEO. Previously titled "Plant Physiology Data, Barrow, Alaska, 2013"
Authors:
;
Publication Date:
DOE Contract Number:
DE-AC05-00OR22725
Product Type:
Dataset
Research Org(s):
Next Generation Ecosystems Experiment - Arctic, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Subject:
54 Environmental Sciences; ngee; ngee-arctic; photosynthesis; stomatal conductance; CO2 concentration; temperature; relative humidity; vapor pressure deficit
OSTI Identifier:
1167160
No associated Projects found.
No associated Collections found.
  1. The dataset contains half-hourly eddy covariance flux measurements and determinations, companion meteorological measurements, and ancillary data from the flux tower (US-NGB) on the Barrow Environmental Observatory at Barrow (Utqiagvik), Alaska for the period 2012 through 2016. Data have been processed using EddyPro software and screenedmore » by the contributor. The flux tower sits in an Arctic coastal tundra ecosystem. This dataset updates a previous dataset by reprocessing a longer period of record in the same manner. Related dataset "Eddy-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013" DOI:10.5440/1124200. « less
  2. This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depthmore » of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013. « less
  3. Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores weremore » stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985. « less
  4. This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4more » flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September. « less
  5. Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1more » meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core. « less