skip to main content

Title: SiC Diode Test Data

Fabricated SiC diodes are tested in the temperature range of 300 °C to 600 °C.
Authors:
Publication Date:
Report Number(s):
441
DOE Contract Number:
FY14 AOP 1.1.5.1
Product Type:
Dataset
Research Org(s):
DOE Geothermal Data Repository; Sandia National Laboratories
Collaborations:
Sandia National Laboratories
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
Subject:
15 Geothermal Energy; geothermal; SiC; diode; test
OSTI Identifier:
1157514
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.
  1. To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. Themore » original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for each data category. The first file contains the grid and is in the SHP file format (shape file.) Each populated grid cell represents a 10k area within which data is known to exist. The second file is a CSV (comma separated value) file that contains all of the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. The attributes in the CSV include: 1. grid_id : The id of the grid cell that the data intersects with 2. title: This represents the name of the WFS service that intersected with this grid cell 3. abstract: This represents the description of the WFS service that intersected with this grid cell 4. gap_type: This represents the category of data availability that these data fall within. As the current processing is pulling data from NGDS, this category universally represents data that are available in the NGDS and are ready for acquisition for analytic purposes. 5. proprietary_type: Whether the data are considered proprietary 6. service_type: The type of service 7. base_url: The service URL « less
  2. The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain,more » it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region. « less
  3. The Carbon Dioxide Research Group, Scripps Institution of Oceanography, University of California, San Diego, has provided this data set, which includes long-term measurements of near-surface atmospheric CO2 concentrations at 10 locations spanning latitudes 82 degrees N to 90 degrees S. Most of the data aremore » based on replicated (collected at the same time and place) flask samples taken at intervals of approximately one week to one month and subsequently subjected to infrared analysis. Periods of record begin in various years, ranging from 1957 (for the South Pole station) to 1985 (for Alert, Canada), and all flask data records except for Christmas Island and Baring Head, New Zealand extend through year 2001. Christmas Island data end with August, 2001 and Baring Head data end with October 2001. Weekly averages of continuous data from Mauna Loa Observatory, Hawaii, are available back to March 1958. Similar weekly averages are also available for La Jolla, California, from November 1972 to October 1975, and for the South Pole from June 1960 to October 1963. At the South Pole, however, this weekly averaged data is usually based on only one day of continuous sampling, and only about 2 averages per month are given. Flask data from all stations include replicate measurements and flagged questionable data; thus, they differ from the usual presentations of CO2 data (e.g., Keeling and Whorf, 2004) which are monthly averaged values fitted to curves as discussed by Keeling et al. (1989). Questionable data are flagged with asterisks; the user is accordingly advised to use caution in including them in analysis or in interpreting them without reference to the flag codes that provide the rationale for data rejections.The data are available in 13 ASCII files: 10 files give the flask measurements corresponding to each of the 10 locations; 2 additional files, one for La Jolla and another for the South Pole, each give about three years of averages, derived from continuous samples, to represent the corresponding weekly averages; another file gives weekly averages of the continuous record since 1958 at Mauna Loa, Hawaii.These long-term records of atmospheric CO2 concentration complement the continuous records made by SIO, and also complement the long term flask records of the Climate Monitoring and Diagnostics Laboratory of the National Oceanic and Atmospheric Administration. All these data are useful for characterizing seasonal and geographical variations in atmospheric CO2 over several years, and for assessing results of global carbon models. Flask data provide information about instantaneous departures from the hourly or multi-hourly averages derived from the continuous data, and at the same time serve as a quality check on those averages. Additionally, flask samples can be archived for future analyses as more refined measuring techniques become available. Temporal and geographical variations in the flask data are similar to those in the continuous data. Annual averages and amplitudes of the annual cycle of atmospheric CO2 concentration both decrease from high northern latitudes to high southern latitudes. Peak annual CO2 concentrations occur in spring, around May in mid latitudes of the Northern Hemisphere and September or October in mid latitudes in the Southern Hemisphere. « less
  4. This data set represents 58 consecutive days of de-identified event data collected from five sources within Los Alamos National Laboratory’s corporate, internal computer network. The data sources include Windows-based authentication events from both individual computers and centralized Active Directory domain controller servers; process start andmore » stop events from individual Windows computers; Domain Name Service (DNS) lookups as collected on internal DNS servers; network flow data as collected on at several key router locations; and a set of well-defined red teaming events that present bad behavior within the 58 days. In total, the data set is approximately 12 gigabytes compressed across the five data elements and presents 1,648,275,307 events in total for 12,425 users, 17,684 computers, and 62,974 processes. Specific users that are well known system related (SYSTEM, Local Service) were not de-identified though any well-known administrators account were still de-identified. In the network flow data, well-known ports (e.g. 80, 443, etc) were not de-identified. All other users, computers, process, ports, times, and other details were de-identified as a unified set across all the data elements (e.g. U1 is the same U1 in all of the data). The specific timeframe used is not disclosed for security purposes. In addition, no data that allows association outside of LANL’s network is included. All data starts with a time epoch of 1 using a time resolution of 1 second. In the authentication data, failed authentication events are only included for users that had a successful authentication event somewhere within the data set. « less
  5. The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submittedmore » in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature (However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region). « less