skip to main content

Title: Hydroshear Simulation Lab Test 2, additional data sheets

This file contains additional data for this test
Authors:
Publication Date:
Report Number(s):
429
DOE Contract Number:
FY14 AOP 1.3.2.5
Product Type:
Dataset
Research Org(s):
DOE Geothermal Data Repository; Sandia National Laboratories
Collaborations:
Sandia National Laboratories
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
Subject:
15 Geothermal Energy; geothermal; hydroshear; granite; precut fracture; fracture simulation; lab test
OSTI Identifier:
1149455
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.
  1. The Carbon Dioxide Research Group, Scripps Institution of Oceanography, University of California, San Diego, has provided this data set, which includes long-term measurements of near-surface atmospheric CO2 concentrations at 10 locations spanning latitudes 82 degrees N to 90 degrees S. Most of the data aremore » based on replicated (collected at the same time and place) flask samples taken at intervals of approximately one week to one month and subsequently subjected to infrared analysis. Periods of record begin in various years, ranging from 1957 (for the South Pole station) to 1985 (for Alert, Canada), and all flask data records except for Christmas Island and Baring Head, New Zealand extend through year 2001. Christmas Island data end with August, 2001 and Baring Head data end with October 2001. Weekly averages of continuous data from Mauna Loa Observatory, Hawaii, are available back to March 1958. Similar weekly averages are also available for La Jolla, California, from November 1972 to October 1975, and for the South Pole from June 1960 to October 1963. At the South Pole, however, this weekly averaged data is usually based on only one day of continuous sampling, and only about 2 averages per month are given. Flask data from all stations include replicate measurements and flagged questionable data; thus, they differ from the usual presentations of CO2 data (e.g., Keeling and Whorf, 2004) which are monthly averaged values fitted to curves as discussed by Keeling et al. (1989). Questionable data are flagged with asterisks; the user is accordingly advised to use caution in including them in analysis or in interpreting them without reference to the flag codes that provide the rationale for data rejections.The data are available in 13 ASCII files: 10 files give the flask measurements corresponding to each of the 10 locations; 2 additional files, one for La Jolla and another for the South Pole, each give about three years of averages, derived from continuous samples, to represent the corresponding weekly averages; another file gives weekly averages of the continuous record since 1958 at Mauna Loa, Hawaii.These long-term records of atmospheric CO2 concentration complement the continuous records made by SIO, and also complement the long term flask records of the Climate Monitoring and Diagnostics Laboratory of the National Oceanic and Atmospheric Administration. All these data are useful for characterizing seasonal and geographical variations in atmospheric CO2 over several years, and for assessing results of global carbon models. Flask data provide information about instantaneous departures from the hourly or multi-hourly averages derived from the continuous data, and at the same time serve as a quality check on those averages. Additionally, flask samples can be archived for future analyses as more refined measuring techniques become available. Temporal and geographical variations in the flask data are similar to those in the continuous data. Annual averages and amplitudes of the annual cycle of atmospheric CO2 concentration both decrease from high northern latitudes to high southern latitudes. Peak annual CO2 concentrations occur in spring, around May in mid latitudes of the Northern Hemisphere and September or October in mid latitudes in the Southern Hemisphere. « less
  2. The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP)more » Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models. « less
  3. This database contains monthly mean surface temperature and mean sea level pressure data from twenty-nine meteorological stations within the Antarctic region. The first version of this database was compiled at the Climatic Research Unit (CRU) of University of East Anglia, Norwich, United Kingdom. The databasemore » extended through 1988 and was made available in 1989 by the Carbon Dioxide Information Analysis Center (CDIAC) as a Numeric Data Package (NDP), NDP-032. This update of the database includes data through early 1999 for most stations (through 2000 for a few), and also includes all available mean monthly maximum and minimum temperature data. For many stations this means that over 40 years of data are now available, enough for many of the trends associated with recent warming to be more thoroughly examined. Much of the original version of this dataset was obtained from the World Weather Records (WWR) volumes (1951-1970), Monthly Climatic Data for the World (since 1961), and several other sources. Updating the station surface data involved requesting data from countries who have weather stations on Antarctica. Of particular importance within this study are the additional data obtained from Australia, Britain and New Zealand. Recording Antarctic station data is particularly prone to errors. This is mostly due to climatic extremes, the nature of Antarctic science, and the variability of meteorological staff at Antarctic stations (high turnover and sometimes untrained meteorological staff). For this compilation, as many sources as possible were contacted in order to obtain as close to official `source' data as possible. Some error checking has been undertaken and hopefully the final result is as close to a definitive database as possible. This NDP consists of this html documentation file, an ASCII text version of this file, six temperature files (three original CRU files for monthly maximum, monthly minimum, and monthly mean temperature and three equivalent files slightly reformatted at CDIAC), two monthly mean pressure data files (one original CRU file and one slightly reformatted CDIAC version of the file), four graphics files that describe the station network and the nature of temperature and pressure trends, a file summarizing annual and mean-monthly trends in surface temperatures over Antarctica, a file summarizing monthly Antarctic surface temperature anomalies with respect to the period 1961-90, a station inventory file, and 3 FORTRAN and 3 SAS routines for reading the data that may be incorporated into analysis programs that users may devise. These 23 files have a total size of approximately 2 megabytes and are available via the Internet through CDIAC's Web site or anonymous FTP (File Transfer Protocol) server, and, upon request, various magnetic media. « less
  4. This submission of data includes all the 1/50th scale testing data completed on the Wave Energy Prize for Float Inc. During the testing of its 1/50th-scale device, Float Inc. Berger ABAM was deemed ineligible due to the fact that they brought a device with themmore » to test and did not ship the device by the deadline stipulated in the Wave Energy Prize Rules. Because of this, analysis, results, and judging were not completed for this team/device. This submission included files such as: - 1/50th test data (raw & processed) - 1/50th test data video and pictures - 1/50th Test plans and testing documents « less
  5. This database contains unit cost information for different components that may be used to integrate distributed photovotaic (D-PV) systems onto distribution systems. Some of these upgrades and costs may also apply to integration of other distributed energy resources (DER). Which components are required, and howmore » many of each, is system-specific and should be determined by analyzing the effects of distributed PV at a given penetration level on the circuit of interest in combination with engineering assessments on the efficacy of different solutions to increase the ability of the circuit to host additional PV as desired. The current state of the distribution system should always be considered in these types of analysis. The data in this database was collected from a variety of utilities, PV developers, technology vendors, and published research reports. Where possible, we have included information on the source of each data point and relevant notes. In some cases where data provided is sensitive or proprietary, we were not able to specify the source, but provide other information that may be useful to the user (e.g. year, location where equipment was installed). NREL has carefully reviewed these sources prior to inclusion in this database. Additional information about the database, data sources, and assumptions is included in the "Unit_cost_database_guide.doc" file included in this submission. This guide provides important information on what costs are included in each entry. Please refer to this guide before using the unit cost database for any purpose. « less