skip to main content

Title: Maine Geological Survey Borehole Temperature Profiles

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.
Authors:
Publication Date:
Report Number(s):
265
DOE Contract Number:
EE0002850
Product Type:
Dataset
Research Org(s):
DOE Geothermal Data Repository; Arizona State Geological Survey
Collaborations:
Arizona State Geological Survey
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
Subject:
15 Geothermal Energy; geothermal; temperature; profiles; maine; bedrock; shapefile; borehole
OSTI Identifier:
1148797
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.
  1. AASG Wells Data for the EGS Test Site Planning and Analysis Task Temperature measurement data obtained from boreholes for the Association of American State Geologists (AASG) geothermal data project. Typically bottomhole temperatures are recorded from log headers, and this information is provided through a boreholemore » temperature observation service for each state. Service includes header records, well logs, temperature measurements, and other information for each borehole. Information presented in Geothermal Prospector was derived from data aggregated from the borehole temperature observations for all states. For each observation, the given well location was recorded and the best available well identified (name), temperature and depth were chosen. The “Well Name Source,” “Temp. Type” and “Depth Type” attributes indicate the field used from the original service. This data was then cleaned and converted to consistent units. The accuracy of the observation’s location, name, temperature or depth was note assessed beyond that originally provided by the service. - AASG bottom hole temperature datasets were downloaded from repository.usgin.org between the dates of May 16th and May 24th, 2013. - Datasets were cleaned to remove “null” and non-real entries, and data converted into consistent units across all datasets - Methodology for selecting ”best” temperature and depth attributes from column headers in AASG BHT Data sets: • Temperature: • CorrectedTemperature – best • MeasuredTemperature – next best • Depth: • DepthOfMeasurement – best • TrueVerticalDepth – next best • DrillerTotalDepth – last option • Well Name/Identifier • APINo – best • WellName – next best • ObservationURI - last option. The column headers are as follows: • gid = internal unique ID • src_state = the state from which the well was downloaded (note: the low temperature wells in Idaho are coded as “ID_LowTemp”, while all other wells are simply the two character state abbreviation) • source_url = the url for the source WFS service or Excel file • temp_c = “best” temperature in Celsius • temp_type = indicates whether temp_c comes from the corrected or measured temperature header column in the source document • depth_m = “best” depth in meters • depth_type = indicates whether depth_m comes from the measured, true vertical, or driller total depth header column in the source document • well_name = “best” well name or ID • name_src = indicates whether well_name came from apino, wellname, or observationuri header column in the source document • lat_wgs84 = latitude in wgs84 • lon_wgs84 = longitude in wgs84 • state = state in which the point is located • county = county in which the point is located « less
  2. Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdfmore » images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection). « less
  3. The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the twomore » separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24. « less
  4. This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purposemore » of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press. « less
  5. This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. Themore » dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area. « less