skip to main content

Title: Dixie Valley Binary Cycle Cost Data March 2014

Orders associated with binary unit
Authors:
Publication Date:
Report Number(s):
418
DOE Contract Number:
EE0002860
Product Type:
Dataset
Research Org(s):
DOE Geothermal Data Repository; Terra-Gen Sierra Holdings, LLC
Collaborations:
Terra-Gen Sierra Holdings, LLC
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
Subject:
15 Geothermal Energy; geothermal; binary power plant; production data; dixie valley nevada; bottoming cycle
OSTI Identifier:
1136706
  1. The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office (DOE GTO). The DOE GTO is providing access to its geothermal project information through the GDR. The GDR is powered by OpenEI, an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory (NREL).
No associated Collections found.
  1. The compressed (.zip) file contains Datawell MK-III Directional Waverider binary and unpacked data files as well as a description of the data and manuals for the instrumentation. The data files are contained in the two directories within the zip file, ''Apr_July_2012'' and ''Jun_Sept_2013''. Time seriesmore » and summary data were recorded in the buoy to binary files with extensions '.RDT' and '.SDT', respectively. These are located in the subdirectories 'Data_Raw' in each of the top-level deployment directories. '.RDT' files contain 3 days of time series (at 1.28 Hz) in 30 minute "bursts". Each '.SDT' file contains summary statistics for the month indicated computed at half-hour intervals for each burst. Each deployment directory also contains a description (in 'File.list') of the Datawell binary data files, and a figure ('Hs_vs_yearday') showing the significant wave height associated with each .RDT file (decoded from the filename). The corresponding unpacked Matlab .mat files are contained in the subdirectories 'Data_Mat'. These files have the extension '.mat' but use the root filename of the source .RDT and .SDT files. « less
  2. This data base contains estimates of land use change and the carbon content of vegetation for South and Southeast Asia for the years 1880, 1920, 1950, 1970, and 1980. These data were originally collected for climate modelers so they could reduce the uncertainty associated withmore » the magnitude and time course of historical land use change and of carbon release. For this data base, South and Southeast Asia is defined as encompassing nearly 8 × 106 km2 of the earth's land surface and includes the countries of India, Sri Lanka, Bangladesh, Myanmar (Burma), Thailand, Laos, Kampuchea (Cambodia), Vietnam, Malaysia, Brunei, Singapore, Indonesia, and the Philippines.The most important change in land use over this 100-year period was the conversion of 107 × 106 ha of forest/woodland to categories with lower biomass. Land thus transformed accounted for 13.5% of the total area of the study region. The estimated total carbon content of live vegetation in South and Southeast Asia has dropped progressively, from 59 × 109 Mg in 1880 to 27 × 109 Mg in 1980. Throughout the study period, the carbon stock in forests was greater than the carbon content in all other categories combined, although its share of the total declined progressively from 81% in 1880 to 73% in 1980. The data base was developed in Lotus 1-2-3TM by using a sequential bookkeeping model. The source data were obtained at the local and regional level for each country from official agricultural and economic statistics (e.g., the United Nations Food and Agriculture Organization); historical geographic and demographic texts, reports, and articles; and any other available source. Because of boundary changes through time and disparities between the validity, availability, and scale of the data for each country, the data were aggregated into 94 ecological zones. The resulting data base contains land use and carbon information for 94 ecological zones and national totals for 13 countries.The directory to which the above link leads provides 90 Lotus 1-2-3TM files, three ARC/INFOTM export files, and five ASCII data files. We advise users to use the file transfer protocol (FTP) to download the binary spreadsheet *.wk1 files; please consult the ndp046.txt documentation file or Accessing CDIAC via FTP for instructions. In addition to these, a descriptive file that explains the contents and format of each data file and four FORTRAN and SAS TM retrieval programs for use with the ASCII data files are included. « less
  3. **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derivemore » the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files. « less
  4. **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derivemore » the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files. « less
  5. **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derivemore » the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files. « less