skip to main content

Title: A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.
Publication Date:
DOE Contract Number:
Product Type:
Research Org(s):
Next Generation Ecosystems Experiment - Arctic, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
54 Environmental Sciences; NGEE; High center polygons; low center polygons; LiDAR; digital elevation model; Barrow, AK topography; NGEE LiDAR
OSTI Identifier:
No associated Projects found.
No associated Collections found.
  1. The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughsmore » are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers. « less
  2. This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundramore » create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies. « less
  3. This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 daymore » periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses. « less
  4. This dataset provides the results of warming incubation of Arctic soils from trough areas of a high-center polygon at the Barrow Environmental Observatory (BEO) in northern Alaska, United States. The organic-rich soil (8-20 cm below ground surface) and the mineral-rich soil (22-45 cm below surface)more » were separated, and the thawed and homogenized subsamples from each soil were incubated at -2 degrees C or 8 degrees C for 122 days under anoxic conditions (headspace filled with N2). The extracted DOM from soil samples were analyzed by Fourier transform ion cyclotron resonance mass spectrometry coupled with electrospray ionization (ESI-FTICR-MS). Reported analytes include soil water content, dissolved organic carbon, total organic carbon, MS peaks' m/z and intensities, and elemental composition of identified molecular formulas. « less
  5. This data set reports the results of spatial surveys of aqueous geochemistry conducted at Intensive Site 1 of the Barrow Environmental Observatory in 2013 and 2014 (Herndon et al., 2015). Surface water and soil pore water samples were collected from multiple depths within the tundramore » active layer of different microtopographic features (troughs, ridges, center) of a low-centered polygon (area A), high-centered polygon (area B), flat-centered polygon (area C), and transitional polygon (area D). Reported analytes include dissolved organic and inorganic carbon, dissolved carbon dioxide and methane, major inorganic anions, and major and minor cations. « less