skip to main content

Title: Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012

The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.
; ;
Publication Date:
DOE Contract Number:
Product Type:
Research Org(s):
Next Generation Ecosystems Experiment - Arctic, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
54 Environmental Sciences; ngee; ngee arctic; LiDAR; digital elevation model; Barrow, AK topography; terrain elevation; lidar backscatter; land surface
OSTI Identifier:
No associated Projects found.
No associated Collections found.
  1. This 0.25m horizontal resolution digital elevation model, DEM, was developed from Airborne Laser Altimetry flown by Aerometric Inc, now known as Quantum Spatial, Inc. on 12 July, 2013. One Mission was flown and the data jointly processed with LANL personnel to produce a 0.25m DEMmore » covering a region approximately 2.8km wide and 12.4km long extending from the coast above North Salt Lagoon to south of Gas Well Road. This DEM encompasses a diverse range of hydrologic, geomorphic, geophysical and biological features typical of the Barrow Peninsula. Vertical accuracy at the 95% confidence interval was computed as 0.143m. The coordinate system, datum, and geoid for this DEM are UTM Zone 4N, NAD83 (2011), NAVD88 (GEOID09). « less
  2. The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughsmore » are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers. « less
  3. This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundramore » create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies. « less
  4. Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores weremore » stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985. « less
  5. The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.