skip to main content

Title: San Clemente Island Data: San Clemente Island, California (Data)

Publication Date:
Report Number(s):
DOE Contract Number:
Product Type:
Research Org(s):
National Renewable Energy Lab. (NREL), Golden, CO (United States)
U.S. Navy; Ed McKenna Consulting
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
17 WIND ENERGY; nrel; midc; meterological; data; measurement; instrumentation; wind rose; weather; outdoor; temperature; pressure; wind
OSTI Identifier:
No associated Projects found.
No associated Collections found.
  1. During Nauru99 it was noted that the island was producing small clouds that advected over the ARM site. The Nauru Island Effect Study was run for 1.5 years and the methodology developed to detect the occurrence. Nauru ACRF downwelling SW, wind direction, and air temperaturemore » data are used, along with downwelling SW data from Licor radiometers located on the southern end of the island near the airport landing strip. A statistical analysis and comparison of data from the two locations is used to detect the likely occurrence of an island influence on the Nauru ACRF site data « less
  2. From the mid-1970s through the mid-1990s, air samples were collected for the purposes of monitoring atmospheric CO2 from four sites in the AES air sampling network. Air samples were collected approximately once per week, between 12:00 and 16:00 local time, in a pair of evacuatedmore » 2-L thick-wall borosilicate glass flasks. Samples were collected under preferred conditions of wind speed and direction (i.e., upwind of the main station and when winds are strong and steady). The flasks were evacuated to pressures of ~1 × 10-4 mbar or 0.01 Pa prior to being sent to the stations. The airwas not dried during sample collection. The flask data from Alert show an increase in the annual atmospheric CO2 concentration from 341.35 parts per million by volume (ppmv) in 1981 to 357.21 ppmv in 1991. For Cape St. James, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.43 ppmv per year. In August 1992, the weather station at Cape St. James was automated; as a result, the flask sampling program was discontinued at this site. Estevan Point, on the West Coast of Vancouver Island, was chosen as a replacement station. Sampling at Estevan Point started in 1992; thus, the monthly and annual CO2record from Estevan Point is too short to show any long-term trends. The sampling site at Sable Island, off the coast of Nova Scotia, was established in 1975. The flask data from Sable Island show an increase in the annual atmospheric CO2 concentration from 334.49 parts per million by volume (ppmv) in 1977 (the first full year of data) to 356.02 ppmv in 1990. For Sable Island, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.48 ppmv per year. « less
  3. The Carbon Dioxide Research Group, Scripps Institution of Oceanography, University of California, San Diego, has provided this data set, which includes long-term measurements of near-surface atmospheric CO2 concentrations at 10 locations spanning latitudes 82 degrees N to 90 degrees S. Most of the data aremore » based on replicated (collected at the same time and place) flask samples taken at intervals of approximately one week to one month and subsequently subjected to infrared analysis. Periods of record begin in various years, ranging from 1957 (for the South Pole station) to 1985 (for Alert, Canada), and all flask data records except for Christmas Island and Baring Head, New Zealand extend through year 2001. Christmas Island data end with August, 2001 and Baring Head data end with October 2001. Weekly averages of continuous data from Mauna Loa Observatory, Hawaii, are available back to March 1958. Similar weekly averages are also available for La Jolla, California, from November 1972 to October 1975, and for the South Pole from June 1960 to October 1963. At the South Pole, however, this weekly averaged data is usually based on only one day of continuous sampling, and only about 2 averages per month are given. Flask data from all stations include replicate measurements and flagged questionable data; thus, they differ from the usual presentations of CO2 data (e.g., Keeling and Whorf, 2004) which are monthly averaged values fitted to curves as discussed by Keeling et al. (1989). Questionable data are flagged with asterisks; the user is accordingly advised to use caution in including them in analysis or in interpreting them without reference to the flag codes that provide the rationale for data rejections.The data are available in 13 ASCII files: 10 files give the flask measurements corresponding to each of the 10 locations; 2 additional files, one for La Jolla and another for the South Pole, each give about three years of averages, derived from continuous samples, to represent the corresponding weekly averages; another file gives weekly averages of the continuous record since 1958 at Mauna Loa, Hawaii.These long-term records of atmospheric CO2 concentration complement the continuous records made by SIO, and also complement the long term flask records of the Climate Monitoring and Diagnostics Laboratory of the National Oceanic and Atmospheric Administration. All these data are useful for characterizing seasonal and geographical variations in atmospheric CO2 over several years, and for assessing results of global carbon models. Flask data provide information about instantaneous departures from the hourly or multi-hourly averages derived from the continuous data, and at the same time serve as a quality check on those averages. Additionally, flask samples can be archived for future analyses as more refined measuring techniques become available. Temporal and geographical variations in the flask data are similar to those in the continuous data. Annual averages and amplitudes of the annual cycle of atmospheric CO2 concentration both decrease from high northern latitudes to high southern latitudes. Peak annual CO2 concentrations occur in spring, around May in mid latitudes of the Northern Hemisphere and September or October in mid latitudes in the Southern Hemisphere. « less
  4. This is the AmeriFlux version of the carbon flux data for the site US-Snd Sherman Island. Site Description - The Sherman Island site is a 38-ha peatland pasture, west of the Delta, that is owned by the state and managed by the California Department ofmore » Water Resources. The site is degraded and heavily grazed with ~100 cattle in the area that circumscribes the main field and fetch. The island has been drained and farmed since the late 1800s. The soils of the Delta overlay deep peat that was sequestered over the Holocene period as sea-level rose and flooding of archaic wetlands prevented decomposition of roots and stems. Hence, the upper 10 m of peatland has been lost to decomposition, compaction, and subsidence. Today a mineral soil overlays a peat layer, which coincides with the general depth of the water table. « less
  5. Hurricane Maria made landfall as a strong Category 4 storm in southeast Puerto Rico on September 20th, 2018. The powerful storm traversed the island in a northwesterly direction causing widespread destruction. This study focused on a rapid assessment of Hurricane Marias impact to Puerto Ricosmore » forests. Calibrated and corrected Landsat 8 image composites for the entire island were generated using Google Earth Engine for a comparable pre-Maria and post-Maria time period that accounted for phenology. Spectral mixture analysis (SMA) using image-derived end members was carried out on both composites to calculate the change in the non-photosynthetic vegetation (Delta-NPV) spectral response, a metric that quantifies the increased fraction of exposed wood and surface litter associated with tree mortality and crown damage from the storm. Hurricane simulations were also conducted using the Weather Research and Forecasting (WRF) regional climate model to estimate wind speeds associated with forest disturbance. Dramatic changes in forest structure across the entire island were evident from pre- and post-Maria composited Landsat 8 images. A Delta-NPV map for only the forested pixels illustrated significant spatial variability in disturbance, with patterns that associated with factors such as slope, aspect and elevation. An initial order-of-magnitude impact estimate based on previous work indicated that Hurricane Maria may have caused mortality and severe damage to 23-31 million trees. Additional field work and image analyses are required to further detail the impact of Hurricane Maria to Puerto Rico forests. A minor update to this dataset was posted on April 20, 2018. The previous version is being retired. If you need access to the prior version of the data, email « less