skip to main content

Title: ARM: Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range

Vaisala Ceilometer (VCEIL): cloud base heights, 25,000 feet max range
Authors:
Publication Date:
DOE Contract Number:
DE-AC05-00OR22725
Product Type:
Dataset
Research Org(s):
Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Collaborations:
PNL, BNL,ANL,ORNL
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Subject:
54 Environmental Sciences; Backscattered radiation; Cloud base height
OSTI Identifier:
1025313
  1. ARM focuses on obtaining continuous measurements—supplemented by field campaigns—and providing data products that promote the advancement of climate models. ARM data include routine data products, value-added products (VAPs), field campaign data, complementary external data products from collaborating programs, and data contributed by ARM principal investigators for use by the scientific community. Data quality reports, graphical displays of data availability/quality, and data plots are also available from the ARM Data Center. Serving users worldwide, the ARM Data Center collects and archives approximately 20 terabytes of data per month. Datastreams are generally available for download within 48 hours.
No associated Collections found.
  1. Vaisala CL51 ceilometer providing attenuated backscatter coefficients and cloud base heights.
  2. Belfort Laser Ceilometer (BLC): 30-s avgs of cloud base heights at up to 3 levels
  3. Ceilometer (CEIL): cloud-base heights
  4. The data set contains physical retrievals of PWV and cloud LWP retrieved from MWR3C measurements during the MAGIC campaign. Additional data used in the retrieval process include radiosondes and ceilometer. The retrieval is based on an optimal estimation technique that starts from a first guessmore » and iteratively repeats the forward model calculations until a predefined convergence criterion is satisfied. The first guess is a vector of [PWV,LWP] from the neural network retrieval fields in the netcdf file. When convergence is achieved the 'a posteriori' covariance is computed and its square root is expressed in the file as the retrieval 1-sigma uncertainty. The closest radiosonde profile is used for the radiative transfer calculations and ceilometer data are used to constrain the cloud base height. The RMS error between the brightness temperatures is computed at the last iterations as a consistency check and is written in the last column of the output file. « less
  5. With some data from as early as 1930, global long-term monthly and/or seasonal total cloud cover, cloud type amounts and frequencies of occurrence, low cloud base heights, harmonic analyses of annual and diurnal cycles, interannual variations and trends, and cloud type co-occurrences have been compiledmore » and presented in two atlases (Warren et al. 1988, 1990). These data were derived from land and ship synoptic weather reports from the "SPOT" archive of the Fleet Numerical Oceanography Center (FNOC) and from Release 1 of the Comprehensive Ocean-Atmosphere Data Set (COADS) for the years 1930-1979. The data are in 12 files (one containing latitude, longitude, land-fraction, and number of land stations for grid boxes; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for land; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for oceans; one containing first cloud analyses for the first year of the GARP Global Experiment (FGGE); one containing cloud-type co-occurrences for land and oceans; and one containing a FORTRAN program to read and produce maps). « less