skip to main content

Title: ARM: Surface Temperature and Humidity Reference system for sondes

Surface Temperature and Humidity Reference system for sondes
Authors:
Publication Date:
DOE Contract Number:
DE-AC05-00OR22725
Product Type:
Dataset
Research Org(s):
Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Subject:
54 Environmental Sciences; Atmospheric moisture; Atmospheric temperature
OSTI Identifier:
1025285
  1. ARM focuses on obtaining continuous measurements—supplemented by field campaigns—and providing data products that promote the advancement of climate models. ARM data include routine data products, value-added products (VAPs), field campaign data, complementary external data products from collaborating programs, and data contributed by ARM principal investigators for use by the scientific community. Data quality reports, graphical displays of data availability/quality, and data plots are also available from the ARM Data Center. Serving users worldwide, the ARM Data Center collects and archives approximately 20 terabytes of data per month. Datastreams are generally available for download within 48 hours.
No associated Collections found.
  1. The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain,more » a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR). « less
  2. The sonde-adjust VAP produces data that corrects documented biases in radiosonde humidity measurements. Unique fields contained within this datastream include smoothed original relative humidity, dry bias corrected relative humidity, and final corrected relative humidity. The smoothed RH field refines the relative humidity from integers -more » the resolution of the instrument - to fractions of a percent. This profile is then used to calculate the dry bias corrected field. The final correction fixes a time-lag problem and uses the dry-bias field as input into the algorithm. In addition to dry bias, solar heating is another correction that is encompassed in the final corrected relative humidity field. Additional corrections were made to soundings at the extended facility sites (S0*) as necessary: Corrected erroneous surface elevation (and up through rest of height of sounding), for S03, S04 and S05. Corrected erroneous surface pressure at Chanute (S02). « less
  3. This NDP presents land-based monthly surface-air-temperature anomalies (departures from a 1951-1970 reference period mean) on a 5° latitude by 10° longitude global grid. Monthly surface-air-temperature anomalies (departures from a 1957-1975 reference period mean) for the Antarctic (grid points from 65°S to 85°S) are presented inmore » a similar way as a separate data set. The data were derived primarily from the World Weather Records and from the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in producing regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. The present updated version of this data set is identical to the earlier version for all records from 1851-1978 except for the addition of the Antarctic surface-air-temperature anomalies beginning in 1957. Beginning with the 1979 data, this package differs from the earlier version in several ways. Erroneous data for some sites have been corrected after a review of the actual station temperature data, and inconsistencies in the representation of missing values have been removed. For some grid locations, data have been added from stations that had not contributed to the original set. Data from satellites have also been used to correct station records where large discrepancies were evident. The present package also extends the record by adding monthly surface-air-temperature anomalies for the Northern (grid points from 85°N to 0°) and Southern (grid points from 5°S to 60°S) Hemispheres for 1985-1990. In addition, this updated package presents the monthly-mean-temperature records for the individual stations that were used to produce the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. « less
  4. Corrections for inaccuracy in Vaisala radiosonde RH measurements have been applied to ARM SGP radiosonde soundings. The magnitude of the corrections can vary considerably between soundings. The radiosonde measurement accuracy, and therefore the correction magnitude, is a function of atmospheric conditions, mainly T, RH, andmore » dRH/dt (humidity gradient). The corrections are also very sensitive to the RH sensor type, and there are 3 Vaisala sensor types represented in this dataset (RS80-H, RS90, and RS92). Depending on the sensor type and the radiosonde production date, one or more of the following three corrections were applied to the RH data: Temperature-Dependence correction (TD), Contamination-Dry Bias correction (C), Time Lag correction (TL). The estimated absolute accuracy of NIGHTTIME corrected and uncorrected Vaisala RH measurements, as determined by comparison to simultaneous reference-quality measurements from Holger Voemel's (CU/CIRES) cryogenic frostpoint hygrometer (CFH), is given by Miloshevich et al. (2006). « less
  5. The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The samplemore » and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold. « less