skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effects of silane network structure on their resistance to water-assisted crack growth.

Journal Article · · Proposed for publication in Langmuir.
OSTI ID:993925

Silane adhesion promoters are commonly used to improve the adhesion, durability, and corrosion resistance of polymer-oxide interfaces. The current study investigates a model interface consisting of the natural oxide of 100 Si and an epoxy cured from diglycidyl ether of bisphenol A (DGEBA) and triethylenetetraamine (TETA). The thickness of (3-glycidoxypropyl)trimethoxysilane (GPS) films placed between the two materials provided the structural variable. Five surface treatments were investigated: a bare interface, a rough monolayer film, a smooth monolayer film, a 5 nm thick film, and a 10 nm thick film. Previous neutron reflection experiments revealed large extension ratios (>2) when the 5 and 10 nm thick GPS films were exposed to deuterated nitrobenzene vapor. Despite the larger extension ratio for the 5 nm thick film, the epoxy/Si fracture energy (G{sub c}) was equal to that of the 10 nm thick film under ambient conditions. Even the smooth monolayer exhibited the same G{sub c}. Only when the monolayer included a significant number of agglomerates did the G{sub c} drop to levels closer to that of the bare interface. When immersed in water at room temperature for 1 week, the threshold energy release rate (G{sub th}) was nearly equal to G{sub c} for the smooth monolayer, 5 nm thick film, and 10 nm thick film. While the G{sub th} for all three films decreased with increasing water temperature, the G{sub th} of the smooth monolayer decreased more rapidly. The bare interface was similarly sensitive to temperature; however, the G{sub th} of the rough monolayer did not change significantly as the temperature was raised. Despite the influence of pH on hydrolysis, the G{sub th} was insensitive to the pH of the water for all surface treatments.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
993925
Report Number(s):
SAND2003-2456J; LANGD5; TRN: US1008163
Journal Information:
Proposed for publication in Langmuir., Vol. 20, Issue 8; ISSN 0743-7463
Country of Publication:
United States
Language:
English