skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.

Abstract

Abstract It is necessary to quantify forest canopy characteristics to assess crown fire hazard, prioritize treatment areas, and design treatments to reduce crown fire potential. A number of fire behavior models such as FARSITE, FIRETEC, and NEXUS require as input four particular canopy fuel parameters: 1) canopy cover, 2) stand height, 3) crown base height, and 4) canopy bulk density. These canopy characteristics must be mapped across the landscape at high spatial resolution to accurately simulate crown fire. Currently no models exist to forecast these four canopy parameters for forests of the Atlantic Coastal Plain, a region that supports millions of acres of loblolly, longleaf, and slash pine forests as well as pine-broadleaf forests and mixed species broadleaf forests. Many forest cover types are recognized, too many to efficiently model. For expediency, forests of the Savannah River Site are categorized as belonging to 1 of 7 broad forest type groups, based on composition: 1) loblolly pine, 2) longleaf pine, 3) slash pine, 4) pine-hardwood, 5) hardwood-pine, 6) hardwoods, and 7) cypress-tupelo. These 7 broad forest types typify forests of the Atlantic Coastal Plain region, from Maryland to Florida.

Authors:
Publication Date:
Research Org.:
USDA Forest Service, Savannah River, New Ellenton, SC
Sponsoring Org.:
USDOE Office of Environment, Safety and Health (EH)
OSTI Identifier:
992617
Report Number(s):
na
07-16-R; TRN: US201023%%150
DOE Contract Number:
AI09-00SR22188
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BULK DENSITY; DESIGN; FIRE HAZARDS; FORESTS; PINES; SAVANNAH RIVER PLANT; SPATIAL RESOLUTION; Canopy fuel, forest types

Citation Formats

Parresol, Bernard, R. Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.. United States: N. p., 2007. Web. doi:10.2172/992617.
Parresol, Bernard, R. Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.. United States. doi:10.2172/992617.
Parresol, Bernard, R. Mon . "Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.". United States. doi:10.2172/992617. https://www.osti.gov/servlets/purl/992617.
@article{osti_992617,
title = {Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.},
author = {Parresol, Bernard, R.},
abstractNote = {Abstract It is necessary to quantify forest canopy characteristics to assess crown fire hazard, prioritize treatment areas, and design treatments to reduce crown fire potential. A number of fire behavior models such as FARSITE, FIRETEC, and NEXUS require as input four particular canopy fuel parameters: 1) canopy cover, 2) stand height, 3) crown base height, and 4) canopy bulk density. These canopy characteristics must be mapped across the landscape at high spatial resolution to accurately simulate crown fire. Currently no models exist to forecast these four canopy parameters for forests of the Atlantic Coastal Plain, a region that supports millions of acres of loblolly, longleaf, and slash pine forests as well as pine-broadleaf forests and mixed species broadleaf forests. Many forest cover types are recognized, too many to efficiently model. For expediency, forests of the Savannah River Site are categorized as belonging to 1 of 7 broad forest type groups, based on composition: 1) loblolly pine, 2) longleaf pine, 3) slash pine, 4) pine-hardwood, 5) hardwood-pine, 6) hardwoods, and 7) cypress-tupelo. These 7 broad forest types typify forests of the Atlantic Coastal Plain region, from Maryland to Florida.},
doi = {10.2172/992617},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • Steamwood cubic-foot volume inside bark tables are presented for 14 species and 9 species groups based on equations used to estimate timber sale volumes on national forests in the Gulf and Atlantic Coastal Plain. Tables are based on form class measurement data for 2,728 trees sampled in the Gulf and Atlantic Coastal Plain and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. inmore » combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.« less
  • The cost and revenue streams for each year in the lifetime of a geothermal energy conversion project are calculated by the Geothermal Resource Interactive Temporal Simulation (GRITS) computer program. The program gives preliminary economic evaluations of projects under a wide range of resource, demand, and financial conditions.
  • The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires usemore » of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.« less
  • In order to develop an initial estimate of the potential competitiveness of low temperature (45 degrees C to 100 degrees C) geothermal resources on the Eastern Coastal Plain, the Center for Metropolitant Planning and Research of The Johns Hopkins University reviewed and compared available energy price projections. Series of projections covering the post-1985 period have been made by the Energy Information Administration, Brookhaven National Laboratory, and by private research firms. Since low temperature geothermal energy will compete primarily for the space and process heating markets currently held by petroleum, natural gas, and electricity, projected trends in the real prices formore » these fuels were examined. The spread in the current and in projected future prices for these fuels, which often serve identical end uses, underscores the influence of specific attributes for each type of fuel, such as cleanliness, security of supply, and governmental regulation. Geothermal energy possesses several important attributes in common with electricity (e.g., ease of maintenance and perceived security of supply), and thus the price of electric space heating is likely to be an upper bound on a competitive price for geothermal energy. Competitiveness would, of course, be increased if geothermal heat could be delivered for prices closer to those for oil and natural gas. The projections reviewed suggest that oil and gas prices will rise significantly in real terms over the next few decades, while electricity prices are projected to be more stable. Electricity prices will, however, remain above those for the other two fuels. The significance of this work rests on the fact that, in market economies, prices provide the fundamental signals needed for efficient resource allocation. Although market prices often fail to fully account for factors such as environmental impacts and long-term scarcity value, they nevertheless embody a considerable amount of information and are the primary guideposts for suppliers and consumers.« less
  • Since 1986, the area of timberland in the Northern Coastal Plain of South Carolina increased by 3 percent to 4.7 million acres. Nonindustrial private forest landowners control 67 percent of the region's timberland. Area classified as a pine type remained stable at 1.9 million acres. More than 116,000 acres were harvested annually, while 177,000 acres were regenerated by artificial and natural means. The volume of softwood growing stock decreased 26 percent to 2.5 billion cubic feet. The volume of hardwood growing stock declined 13 percent to 3.1 billion cubic feet. Extremely high mortality drove net growth downward. Net annual growthmore » of softwoods declined 84 percent to 28 million cubic feet. Hardwood growth dropped 77 percent to 23 million cubic feet. Annual removals of softwood growing stock increased 9 percent to 175 million cubic feet; hardwood removals jumped 18 percent to 87 million cubic feet. Annual mortality of softwood growing stock was up eight times the level recorded in 1986, whereas hardwood mortality was up four times the previous level.« less