skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructural Stability of Nanocrystalline Copper through the Addition of Antimony Dopants at Grain Boundaries: Experiments and Molecular Dynamics Simulations

Journal Article · · Acta Materialia
OSTI ID:992521

Experiments and simulations show that the microstructural stability of nanocrystalline Cu can be improved by adding impurity atoms, such as Sb, which migrate to the grain boundaries. Cu100-xSbx alloys are cast in three compositions (Cu-0.0, 0.2 and 0.5 at.%Sb) and subsequently processed into nanocrystalline form by equal channel angular extrusion (ECAE). The presence of Sb atoms at the grain boundaries increases the recrystallization temperature to 400 C compared to 200 C for pure nanocrystalline Cu, which was verified by measurements of microhardness, ultimate tensile strength, grain size using TEM, and Auger electron spectroscopy. Molecular dynamics (MD) simulations were performed using a wider range of Sb compositions (0.0 to 1.0 at.%Sb) to study the underlying mechanisms associated with stability. MD simulations show that Sb atoms reduce excess grain boundary energy and that 0.2 and 0.5 at.%Sb is enough to stabilize the nanocrystalline Cu microstructure.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Shared Research Equipment Collaborative Research Center
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
992521
Journal Information:
Acta Materialia, Vol. 45, Issue 24; ISSN 1359-6454
Country of Publication:
United States
Language:
English