skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

Technical Report ·
DOI:https://doi.org/10.2172/991213· OSTI ID:991213

The forestry, wood and paper industries in the United States provide thousands of productive well-paying jobs; however, in the face of the recent economic downturn it faces significant challenges in remaining economically viable and competitive. To compete successfully on a global market that is increasingly driven by the need for sustainable products and practices, the industry must improve margins and diversify product lines while continuing to produce the staple products. One approach that can help to accomplish this goal sustainably is the forest biorefinery. In the forest biorefinery, traditional waste streams are utilized singly or in combination to manufacture additional products in a profitable and environmentally sustainable manner. In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. Renewable microbial polyesters are not currently used in WFRTCs primarily because their production costs are several times higher than those of conventional petrochemical-derived plastics, limiting their use to small specialty markets. The strategy for this project was to economically produce WFRTCs using microbial polyesters by reducing or eliminating the most costly steps in the bio-plastic production. This would be achieved by producing them in and from waste effluents from the municipal and forest products sectors, and by eliminating the costly purification steps. After production the plasticladen biosolids would be dried and used directly to replace petroleum-derived plastics in WFRTCs. Using this strategy, we could greatly reduce the cost of producing and utilizing these renewable plastics in WFRTCs. This was a collaborative project among the Idaho National Laboratory, Washington State University, the University of California-Davis, Glatfelter Corporation, Strandex Corporation, and ECO:LOGIC Engineering, Inc. The project was comprised of five tasks. The first four tasks addressed PHA production, extrusion, and composite properties. Feedstock performance and compositional properties were determined in the laboratory by WSU. Both pure commercial PHAs (Task 1) and unpurified effluentderived PHAs (Task 4) were used. Results were used to define appropriate effluent feedstocks (Task 2) and optimize supplements (Task 3) to produce biosolids for the preferred composite formulations. Task 5 included a pilot-scale extrusion of wood-PHA-biosolids composites.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC07-05ID14517
OSTI ID:
991213
Report Number(s):
INL/CRADA-04-10
Country of Publication:
United States
Language:
English