skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase

Abstract

The difference in adsorption behavior between a conventional monomeric endcapped C{sub 18} stationary phase (3.43 {micro}mol/m{sup 2}) and an endcapped polymeric RP-Amide phase (3.31 {micro}mol/m{sup 2}) was investigated. The adsorption isotherms of four compounds (phenol, caffeine, sodium 2-naphthalene sulfonate, and propranololium chloride) were measured by frontal analysis (FA) and the degree of heterogeneity of each phase for each solute was characterized by their adsorption energy distributions (AED), derived using the Expectation-Maximization method. The results show that only certain analytes (phenol and 2-naphthalene sulfonate) are sensitive to the presence of the polar embedded amide groups within the RP phase. Their binding constants on the amide-bonded phase are significantly higher than on conventional RPLC phases. Furthermore, an additional type of adsorption sites was observed for these two compounds. However, these sites having a low density, their presence does not affect much the retention factors of the two analytes. On the other hand, the adsorption behavior of the other two analytes (caffeine and propranololium chloride) is almost unaffected by the presence of the amide group in the bonded layer. Strong selective interactions may explain these observations. For example, hydrogen-bond interactions between an analyte (e.g., phenol or naphthalene sulfonate) and the carbonyl group (acceptor)more » or the nitrogen (donor) of the amido-embedded group may take place. No such interactions may take place with either caffeine or the cation propranololium chloride. This study confirms the hypothesis that analytes have ready access to locations deep inside the bonded layer, where the amide groups are present.« less

Authors:
 [1];  [2]
  1. University of Tennessee, Knoxville (UTK)
  2. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
989608
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chromatography A; Journal Volume: 1103; Journal Issue: 2006
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; LIQUID COLUMN CHROMATOGRAPHY; EXTRACTION COLUMNS; COLUMN PACKING; PERFORMANCE; ADSORPTION ISOTHERMS; CAFFEINE; SULFONATES; NAPHTHALENE; PHENOL; ORGANIC CHLORINE COMPOUNDS; ENERGY SPECTRA; AMIDES; SORPTIVE PROPERTIES

Citation Formats

Gritti, Fabrice, and Guiochon, Georges A. A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase. United States: N. p., 2006. Web. doi:10.1016/j.chroma.2005.11.089.
Gritti, Fabrice, & Guiochon, Georges A. A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase. United States. doi:10.1016/j.chroma.2005.11.089.
Gritti, Fabrice, and Guiochon, Georges A. Sun . "A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase". United States. doi:10.1016/j.chroma.2005.11.089.
@article{osti_989608,
title = {A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase},
author = {Gritti, Fabrice and Guiochon, Georges A},
abstractNote = {The difference in adsorption behavior between a conventional monomeric endcapped C{sub 18} stationary phase (3.43 {micro}mol/m{sup 2}) and an endcapped polymeric RP-Amide phase (3.31 {micro}mol/m{sup 2}) was investigated. The adsorption isotherms of four compounds (phenol, caffeine, sodium 2-naphthalene sulfonate, and propranololium chloride) were measured by frontal analysis (FA) and the degree of heterogeneity of each phase for each solute was characterized by their adsorption energy distributions (AED), derived using the Expectation-Maximization method. The results show that only certain analytes (phenol and 2-naphthalene sulfonate) are sensitive to the presence of the polar embedded amide groups within the RP phase. Their binding constants on the amide-bonded phase are significantly higher than on conventional RPLC phases. Furthermore, an additional type of adsorption sites was observed for these two compounds. However, these sites having a low density, their presence does not affect much the retention factors of the two analytes. On the other hand, the adsorption behavior of the other two analytes (caffeine and propranololium chloride) is almost unaffected by the presence of the amide group in the bonded layer. Strong selective interactions may explain these observations. For example, hydrogen-bond interactions between an analyte (e.g., phenol or naphthalene sulfonate) and the carbonyl group (acceptor) or the nitrogen (donor) of the amido-embedded group may take place. No such interactions may take place with either caffeine or the cation propranololium chloride. This study confirms the hypothesis that analytes have ready access to locations deep inside the bonded layer, where the amide groups are present.},
doi = {10.1016/j.chroma.2005.11.089},
journal = {Journal of Chromatography A},
number = 2006,
volume = 1103,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • In a previous report, the heterogeneity of a non-endcapped C{sub 30}-bonded stationary phase was investigated, based on the results of the measurements of the adsorption isotherms of two neutral compounds (phenol and caffeine) and two ionizable compounds (sodium naphthalene sulfonate and propranololium chloride) by frontal analysis (FA). The same method is applied here for the characterization of the surface heterogeneity of two new brands of endcapped C{sub 18}-bonded stationary phases (Gemini and Sunfire). The adsorption isotherms of the same four chemicals were measured by FA and the results confirmed by the independent calculation of the adsorption energy distribution (AED), usingmore » the expectation-maximization (EM) method. The effect of the length of the bonded alkyl chain was investigated. Shorter alkyl-bonded-chains (C{sub 18} versus C{sub 30}) and the end-capping of the silica surface contribute to decrease the surface heterogeneity under the same experimental conditions (30% methanol, 25 mM NaCl). The AEDs of phenol and caffeine are bimodal with the C{sub 18}-bonded columns while they are trimodal and quadrimodal, respectively, with a non-endcapped C{sub 30}-bonded column. The 'supersites' (adsorption energy >20 kJ/mol) found on the C{sub 30}-Prontosil column and attributed to a cation exchange mechanism completely disappear on the C{sub 18}-Gemini and C{sub 18}-Sunfire, probably because the end-capping of the silica surface eliminates most if not all the ionic interactions.« less
  • A new chromatographic method estimating the degree of heterogeneity of RPLC packing materials is based on the results of systematic measurements of the adsorption data in a wide concentration range for selected probe compounds. These data are acquired by frontal analysis (FA), modeled, and used for the calculation of the adsorption energy distribution (AED). Four compounds were used, two neutral compounds of different molecular sizes (caffeine and phenol) and two ionizable compounds of opposite charges, 2-naphthalene sulfonate, an anion, and propranololium, a cation. This work was done on a C{sub 30}-bonded silica stationary phase (Prontosil-C{sub 30}), using the same aqueousmore » mobile phase (30% methanol, v/v) for all compounds, except that sodium chloride (25 mM) was added to elute the ionizable compounds. All four adsorption isotherms have Langmuirian behavior. The AEDs are tri-modal for phenol, quadri-modal for caffeine. The total saturation capacity of the stationary phase is four-fold lower for caffeine than for phenol, due in part to its larger molecular size. The equilibrium constants on the low-energy sites of types 1 and 2 are eight-fold larger. These two types of sites characterize the heterogeneity of the bonded layer itself. The density of the high-energy sites of types 3 and 4 is higher for caffeine, suggesting that caffeine molecules can be accommodated in some hydrophobic cages into which smaller molecules like phenol cannot. These high-energy types of sites characterize the heterogeneity of the whole stationary phase (silica support included). The ionizable compounds have larger molecules than the neutral ones and, accordingly, a lower relative density of sites of type 2 to sites of type 1. A tri-modal and a quadri-modal energy distributions were observed for the 2-naphthalene sulfonate anion and the propranololium cation, respectively. The fourth types of sites measured and its unusually high equilibrium constant are most probably due to ion-exchange interactions between the non-endcapped ionized silanols and the propranololium ion. No such strong interactions are observed with the anionic compound.« less
  • A radiochemical study of the irreversible adsorption of proteins on commercial reversed-phase HPLC packing materials is reported. The conditions of study are similar to those used in HPLC separation of protein. The effects of the amounts and contact time of two proteins, ovalbumin and cytochrome c, are reported. Additional results include the effect of column pretreatment with protein, silanophilic, mobile-phase blocking agent, and type of packing material on the extent of irreversible adsorption. The loss process is shown to be at least biphasic and the mechanisms of loss distinct for different proteins.
  • Reversed-phase paper chromatographic separations of As(III), Sb(III) and Bi(III) have been carried out on Whatman No 1 filter paper impregnated with triphenylphosphine oxide as stationary phase and using organic complexing agents such as sodium acetate, sodium succinate and sodium malonate solutions as active mobile phases. Results for the separation of binary and ternary mixtures are reported and the method has been successfully applied to the separation and detection of these elements present in real samples and at ppm level concentration.
  • The adsorption isotherms of phenol, caffeine, propranolol chloride, and amitriptyline chloride were measured on three new brands of C{sub 18}-bonded silica that have been designed to be more resistant than conventional C{sub 18}-bonded silica at high pHs (>8). These columns were the 4 {micro}m Bidendate Cogent-C{sub 18} (Microsolv Technology Corporation, Long Branch, NJ, USA), the 3.5 {micro}m Zorbax Extend-C{sub 18} (Agilent Technologies, Palo Alto, CA, USA), and the 5 {micro}m XTerra-C{sub 18} (Waters, Milford, MA, USA). The originality of these adsorbents is due to their surface chemistry, which protects them from rapid hydrolysis or dissolution at extreme pH conditions. Theirmore » adsorption properties were compared to those of the 3 {micro}m Luna-C{sub 18} (Phenomenex, Torrance, CA), which is a more conventional monofunctional material. The adsorption data were acquired by frontal analysis (FA) and the adsorption energy distributions (AEDs) of all systems studied were calculated by the expectation-maximization (EM) method. The experimental results show that neither a simple surface protection (Extend-C{sub 18}) nor the elimination of most of the silanol groups (Cogent-C{sub 18}) is sufficient to avoid a peak tailing of the basic compounds at pH 8 that is of thermodynamic origin. The incorporation of organic moieties in the silica matrix, which was achieved in XTerra-C{sub 18}, the first generation of hybrid methyl/silica material, reduces the silanols activity and is more successful in reducing this peak tailing.« less