skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 422nd Brookhaven Lecture. Aerosols, Clouds and Climate: From Micro to Micro

Abstract

As scientists who study aerosols, clouds, and precipitation know, particles in the atmosphere interact with one another and affect the Earth's climate through a myriad of complex processes. Learn more about this topic from Yangang Liu as he presents "Aerosols, Clouds, and Climate: From Micro to Macro."

Authors:
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
987831
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; CLIMATE; ATMOSPHERE; EARTH

Citation Formats

Yangang Liu. 422nd Brookhaven Lecture. Aerosols, Clouds and Climate: From Micro to Micro. United States: N. p., 2007. Web.
Yangang Liu. 422nd Brookhaven Lecture. Aerosols, Clouds and Climate: From Micro to Micro. United States.
Yangang Liu. Wed . "422nd Brookhaven Lecture. Aerosols, Clouds and Climate: From Micro to Micro". United States. doi:. https://www.osti.gov/servlets/purl/987831.
@article{osti_987831,
title = {422nd Brookhaven Lecture. Aerosols, Clouds and Climate: From Micro to Micro},
author = {Yangang Liu},
abstractNote = {As scientists who study aerosols, clouds, and precipitation know, particles in the atmosphere interact with one another and affect the Earth's climate through a myriad of complex processes. Learn more about this topic from Yangang Liu as he presents "Aerosols, Clouds, and Climate: From Micro to Macro."},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 21 00:00:00 EST 2007},
month = {Wed Feb 21 00:00:00 EST 2007}
}
  • By reflecting sunlight, clouds may be mitigating the warming effect of greenhouse gases in the Earth's atmosphere. To discuss the roll that aerosol particles play in the cooling mechanism of clouds, Chemist Yin-Nan Lee of the Atmospheric Sciences Division of the Environmental Sciences Department will discuss “A Tale of Two Hemispheres: Field Studies of Aerosols and Marine Stratocumulus Clouds” during the 451st Brookhaven Lecture, beginning 4 p.m. on Wednesday 13 May in Berkner Hall. During his lecture, Dr. Lee will discuss his findings from collaborative studies of stratocumulus clouds over the coastal waters of California and Chile.
  • In the last 100 years, the Earth has warmed by about 1ºF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of “global warming,” which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climatemore » and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.« less
  • In the last 100 years, the Earth has warmed by about 1°F, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of “global warming,” which is believed to be at least partly due to the increased carbon dioxide (CO 2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models ofmore » climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO 2.« less
  • Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds’ updrafts and downdrafts—which resemble airflow in a convection oven—and many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earth’s climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earth’s climate systemmore » before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.« less
  • Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," saidmore » Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."« less