skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrons and Mirror Symmetry

Abstract

The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

Authors:
Publication Date:
Research Org.:
FNAL (Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States))
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
987210
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Multimedia
Resource Relation:
Conference: Fermilab Colloquia, Fermi National Accelerator Laboratory (FNAL), Batvia, Illinois (United States), presented on April 04, 2007
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Kumar, Krishna. Electrons and Mirror Symmetry. United States: N. p., 2007. Web.
Kumar, Krishna. Electrons and Mirror Symmetry. United States.
Kumar, Krishna. Wed . "Electrons and Mirror Symmetry". United States. doi:. https://www.osti.gov/servlets/purl/987210.
@article{osti_987210,
title = {Electrons and Mirror Symmetry},
author = {Kumar, Krishna},
abstractNote = {The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 04 00:00:00 EDT 2007},
month = {Wed Apr 04 00:00:00 EDT 2007}
}