skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Science and Science Fiction

Abstract

I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

Authors:
 [1]
  1. Vanderbilt University, Nashville, Tennessee, United States
Publication Date:
Research Org.:
FNAL (Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States))
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
987166
DOE Contract Number:
AC02-07CH11359
Resource Type:
Multimedia
Resource Relation:
Conference: Fermilab Colloquia, Fermi National Accelerator Laboratory (FNAL), Batvia, Illinois (United States), presented on March 29, 2006
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS

Citation Formats

Scherrer, Robert. Science and Science Fiction. United States: N. p., 2006. Web.
Scherrer, Robert. Science and Science Fiction. United States.
Scherrer, Robert. Wed . "Science and Science Fiction". United States. doi:. https://www.osti.gov/servlets/purl/987166.
@article{osti_987166,
title = {Science and Science Fiction},
author = {Scherrer, Robert},
abstractNote = {I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 29 00:00:00 EST 2006},
month = {Wed Mar 29 00:00:00 EST 2006}
}
  • In her talk, Tarter discusses the new Allen Telescope Array being developed for SETI (Search for Extraterrestrial Intelligence) that will provide the first systematic look at the transient radio universe.
  • Research meteorologist Doug Sisterson discusses climate change and the cutting-edge research taking place at Argonne as well as collaborative research with other institutions, including the University of Chicago.
  • No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenonmore » known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.« less
  • Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion ? moderated by KTVU's John Fowler ? on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.