skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)

Abstract

The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

Authors:
; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
984181
Report Number(s):
NREL/TP-6A2-47213
TRN: US201015%%1089
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY AND ECONOMY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 54 ENVIRONMENTAL SCIENCES; BIOFUELS; CARBON; CLIMATES; ELECTRICITY; ENERGY EFFICIENCY; GREENHOUSE GASES; MITIGATION; NATIONAL GOVERNMENT; SECURITY; SIMULATION; US ENERGY INFORMATION ADMINISTRATION; RENEWABLE ENERGY SOURCES; LIEBERMAN-WARNER CLIMATE SECURITY ACT OF 2007; S.2191; SENATE BILL 2191; CARBON EMISSIONS; GREENHOUSE GAS EMISSIONS; EMISSION REDUCTIONS; GREENHOUSE GAS ALLOWANCE PRICES; ENERGY INTENSITY; CARBON CAP; TECHNOLOGICAL CHANGE; RESEARCH AND DEVELOPMENT; RENEWABLE ENERGY; FEDERAL GOVERNMENT; Energy Analysis

Citation Formats

Showalter, S., Wood, F., and Vimmerstedt, L.. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). United States: N. p., 2010. Web. doi:10.2172/984181.
Showalter, S., Wood, F., & Vimmerstedt, L.. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). United States. doi:10.2172/984181.
Showalter, S., Wood, F., and Vimmerstedt, L.. Tue . "Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)". United States. doi:10.2172/984181. https://www.osti.gov/servlets/purl/984181.
@article{osti_984181,
title = {Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)},
author = {Showalter, S. and Wood, F. and Vimmerstedt, L.},
abstractNote = {The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.},
doi = {10.2172/984181},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 01 00:00:00 EDT 2010},
month = {Tue Jun 01 00:00:00 EDT 2010}
}

Technical Report:

Save / Share:
  • The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis ofmore » the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.« less
  • Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less
  • Report on the compliance of federal agencies with Section 203 of the Energy Policy Act of 2005.
  • Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on justmore » one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.« less
  • The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands. The Tribe's Comprehensive Strategic Plan seeks to diversify the Tribal Economy through the creation of alternative energy businesses, such as wind, solar and bio-mass facilities while protecting the waters of Lake Superior, tribal inland lakes and streams. In addition, the Community desired to utilize clean/green energy resources to promote the self-sufficiency of the Tribal Nation. The objective of the study is to preserve our environment and maintain our cultural goalsmore » of using the resources of the land wisely. To reduce our consumption of fossil fuels, mercury and carbon dioxide emissions, which harm our water and land; we have decided to evaluate the opportunities of utilizing wind power. Preliminary projections show that we may eliminate pollution from our land in a cost effective manner. This study will evaluate wind capacity and our current energy consumption while projecting the feasibility of converting to wind power for operations at our major facilities. This project will study the feasibility of wind power at two locations for the purpose of reducing the Tribe's reliance upon fossil fuels and creating business opportunities, jobs and revenue for the community.« less