skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC

Abstract

This document describes preliminary design modifications to the CSMC Test Facility in JAEA, Naka, Japan that will allow rapid test and change-out of CS conductor samples while simultaneously achieving more precise and reliable characterization of those samples than is presently achievable elsewhere. The current philosophy for CS conductor testing is to test an Insert in CSMC followed by SULTAN testing. The SULTAN facility has very short length in field and a short length between the High Field Zone and the joints. This makes it difficult to obtain uniform distribution of current in the cable at low voltage levels, which defines the current sharing temperature. In a real magnet, like ITER CS, there is a long length of conductor in the highest field. Such conditions provide a more uniform current distribution near current sharing. The modified facility will serve as an economical tool for ITER conductor testing. The test item will be a three turn sample, approximately 15 m long, placed in the background field of the CSMC. This new mode of operation will reduce the time of cool-down, warm-up and installation of the sample into the CSMC facility, which should significantly reduce the cost of a test per sample.

Authors:
 [1];  [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); ITER Program
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
983543
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: Cryogenic Engineering Conference and International Cryogenic Materials Conference, Tucson, AZ, USA, 20090628, 20090702
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; TEST FACILITIES; MODIFICATIONS; SUPERCONDUCTING CABLES; CRYOGENICS; DESIGN; JAEA; SOLENOIDS; TESTING; ITER TOKAMAK; TIME DEPENDENCE

Citation Formats

Hatfield, Daniel R, Miller, John L, Martovetsky, Nicolai N, and Kenney, Steven J. Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC. United States: N. p., 2010. Web.
Hatfield, Daniel R, Miller, John L, Martovetsky, Nicolai N, & Kenney, Steven J. Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC. United States.
Hatfield, Daniel R, Miller, John L, Martovetsky, Nicolai N, and Kenney, Steven J. 2010. "Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC". United States. doi:.
@article{osti_983543,
title = {Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC},
author = {Hatfield, Daniel R and Miller, John L and Martovetsky, Nicolai N and Kenney, Steven J},
abstractNote = {This document describes preliminary design modifications to the CSMC Test Facility in JAEA, Naka, Japan that will allow rapid test and change-out of CS conductor samples while simultaneously achieving more precise and reliable characterization of those samples than is presently achievable elsewhere. The current philosophy for CS conductor testing is to test an Insert in CSMC followed by SULTAN testing. The SULTAN facility has very short length in field and a short length between the High Field Zone and the joints. This makes it difficult to obtain uniform distribution of current in the cable at low voltage levels, which defines the current sharing temperature. In a real magnet, like ITER CS, there is a long length of conductor in the highest field. Such conditions provide a more uniform current distribution near current sharing. The modified facility will serve as an economical tool for ITER conductor testing. The test item will be a three turn sample, approximately 15 m long, placed in the background field of the CSMC. This new mode of operation will reduce the time of cool-down, warm-up and installation of the sample into the CSMC facility, which should significantly reduce the cost of a test per sample.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2010,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Central Solenoid Model Coil (CSMC) was designed and built by an ITER collaboration in 1993-2001. Three heavily instrumented Inserts have been also built for testing in the background field of the CSMC. The Nb3AI Insert was designed and built by Japan to explore the feasibility of an alternative to Nb3Sn superconductor for fusion magnets. The Nb3AI Insert coil was tested in the CSMC Test Facility at the Japan Atomic Energy Research Institute, Naka, Japan in March-May 2002. It was the third Insert tested in this facility under this program. The Nb3AI Insert coil was charged successfully without training inmore » the background field of the CSMC to the design current of 46 kA at 13 T peak field and later was successfully charged up to 60 kA in 12.5 T field. This paper presents the test results overview.« less
  • The Central Solenoid Model Coil (CSMC) was designed and built by ITER collaboration between the European Union, Japan, Russian Federation and the United States in 1993-2001. Three heavily instrumented insert coils have been also built for testing in the background field of the CSMC to cover a wide operational space. The TF Insert was designed and built by the Russian Federation to simulate the conductor performance under the ITER TF coil conditions. The TF Insert Coil was tested in the CSMC Test Facility at the Japan Atomic Energy Research Institute, Naka, Japan in September-October 2001. Some measurements were performed alsomore » on the CSMC to study effects of electromagnetic and cooldown cycles. The TF Insert coil was charged successfully, without training, in the background field of the CSMC to the design current of 46 kA at 13 T peak field. The TF Insert met or exceeded all design objectives, however some interesting results require thorough analyses. This paper presents the overview of main results of the testing--magnet critical parameters, ac losses, joint performance, effect of cycles on performance, quench and thermo-hydraulic characteristics and some results of the post-test analysis.« less
  • The Central Solenoid Model Coil (CSMC) was designed and built from 1993 to 1999 by an ITER collaboration between the US and Japan, with contributions from the European Union and the Russian Federation. The main goal of the project was to establish the superconducting magnet technology necessary for a large-scale fusion experimental reactor. Three heavily instrumented insert coils were built to cover a wide operational space for testing. The CS Insert, built by Japan, was tested in April-August of 2000. The TF Insert, built by Russian Federation, will be tested in the fall of 2001. The NbAl Insert, built bymore » Japan, will be tested in 2002. The testing takes place in the CSMC Test Facility at the Japan Atomic Energy Research Institute, Naka, Japan. The CSMC was charged successfully without training to its design current of 46 kA to produce 13 T in the magnet bore. The stored energy at 46 kA was 640 MJ. This paper presents the main results of the CSMC and the CS Insert testing--magnet critical parameters, ac losses, joint performance, quench characteristics and some results of the post-test analysis.« less
  • A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete.more » It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations.« less
  • This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.