skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ETDEWEB versus the World-Wide-Web: a specific database/web comparison

Abstract

A study was performed comparing user search results from the specialized scientific database on energy-related information, ETDEWEB, with search results from the internet search engines Google and Google Scholar. The primary objective of the study was to determine if ETDEWEB (the Energy Technology Data Exchange – World Energy Base) continues to bring the user search results that are not being found by Google and Google Scholar. As a multilateral information exchange initiative, ETDE’s member countries and partners contribute cost- and task-sharing resources to build the largest database of energy-related information in the world. As of early 2010, the ETDEWEB database has 4.3 million citations to world-wide energy literature. One of ETDEWEB’s strengths is its focused scientific content and direct access to full text for its grey literature (over 300,000 documents in PDF available for viewing from the ETDE site and over a million additional links to where the documents can be found at research organizations and major publishers globally). Google and Google Scholar are well-known for the wide breadth of the information they search, with Google bringing in news, factual and opinion-related information, and Google Scholar also emphasizing scientific content across many disciplines. The analysis compared the results of 15more » energy-related queries performed on all three systems using identical words/phrases. A variety of subjects was chosen, although the topics were mostly in renewable energy areas due to broad international interest. Over 40,000 search result records from the three sources were evaluated. The study concluded that ETDEWEB is a significant resource to energy experts for discovering relevant energy information. For the 15 topics in this study, ETDEWEB was shown to bring the user unique results not shown by Google or Google Scholar 86.7% of the time. Much was learned from the study beyond just metric comparisons. Observations about the strengths of each system and factors impacting the search results are also shared along with background information and summary tables of the results. If a user knows a very specific title of a document, all three systems are helpful in finding the user a source for the document. But if the user is looking to discover relevant documents on a specific topic, each of the three systems will bring back a considerable volume of data, but quite different in focus. Google is certainly a highly-used and valuable tool to find significant ‘non-specialist’ information, and Google Scholar does help the user focus on scientific disciplines. But if a user’s interest is scientific and energy-specific, ETDEWEB continues to hold a strong position in the energy research, technology and development (RTD) information field and adds considerable value in knowledge discovery. (auth)« less

Authors:
Publication Date:
Research Org.:
Energy Technology Data Exchange (ETDE Operating Agent), USDOE/OSTI (Office of Scientific and Technical Information), Oak Ridge, TN (United States)
Sponsoring Org.:
Energy Technology Data Exchange (United States)
OSTI Identifier:
982697
Report Number(s):
ETDE/OA-237
TRN: US201014%%747
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS; ETDE; INTERNET; INFORMATION RETRIEVAL; INFORMATION SYSTEMS; COMPARATIVE EVALUATIONS; INTERNATIONAL AGREEMENTS; INTERNATIONAL ENERGY AGENCY

Citation Formats

Cutler, Debbie. ETDEWEB versus the World-Wide-Web: a specific database/web comparison. United States: N. p., 2010. Web. doi:10.2172/982697.
Cutler, Debbie. ETDEWEB versus the World-Wide-Web: a specific database/web comparison. United States. doi:10.2172/982697.
Cutler, Debbie. Mon . "ETDEWEB versus the World-Wide-Web: a specific database/web comparison". United States. doi:10.2172/982697. https://www.osti.gov/servlets/purl/982697.
@article{osti_982697,
title = {ETDEWEB versus the World-Wide-Web: a specific database/web comparison},
author = {Cutler, Debbie},
abstractNote = {A study was performed comparing user search results from the specialized scientific database on energy-related information, ETDEWEB, with search results from the internet search engines Google and Google Scholar. The primary objective of the study was to determine if ETDEWEB (the Energy Technology Data Exchange – World Energy Base) continues to bring the user search results that are not being found by Google and Google Scholar. As a multilateral information exchange initiative, ETDE’s member countries and partners contribute cost- and task-sharing resources to build the largest database of energy-related information in the world. As of early 2010, the ETDEWEB database has 4.3 million citations to world-wide energy literature. One of ETDEWEB’s strengths is its focused scientific content and direct access to full text for its grey literature (over 300,000 documents in PDF available for viewing from the ETDE site and over a million additional links to where the documents can be found at research organizations and major publishers globally). Google and Google Scholar are well-known for the wide breadth of the information they search, with Google bringing in news, factual and opinion-related information, and Google Scholar also emphasizing scientific content across many disciplines. The analysis compared the results of 15 energy-related queries performed on all three systems using identical words/phrases. A variety of subjects was chosen, although the topics were mostly in renewable energy areas due to broad international interest. Over 40,000 search result records from the three sources were evaluated. The study concluded that ETDEWEB is a significant resource to energy experts for discovering relevant energy information. For the 15 topics in this study, ETDEWEB was shown to bring the user unique results not shown by Google or Google Scholar 86.7% of the time. Much was learned from the study beyond just metric comparisons. Observations about the strengths of each system and factors impacting the search results are also shared along with background information and summary tables of the results. If a user knows a very specific title of a document, all three systems are helpful in finding the user a source for the document. But if the user is looking to discover relevant documents on a specific topic, each of the three systems will bring back a considerable volume of data, but quite different in focus. Google is certainly a highly-used and valuable tool to find significant ‘non-specialist’ information, and Google Scholar does help the user focus on scientific disciplines. But if a user’s interest is scientific and energy-specific, ETDEWEB continues to hold a strong position in the energy research, technology and development (RTD) information field and adds considerable value in knowledge discovery. (auth)},
doi = {10.2172/982697},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jun 28 00:00:00 EDT 2010},
month = {Mon Jun 28 00:00:00 EDT 2010}
}

Technical Report:

Save / Share:
  • As a teaching tool, the World Wide Web (WWW) is unprecedented in its ability to transmit information and enhance communication between scientist and student. Just beginning to be developed are sites that actively engage the user in the learning process and provide hands-on methods of teaching contemporary topics. These topics are often not found in the classroom due to the complexity and expense of the laboratory equipment and the WWW is an ideal tool for overcoming this difficulty. This paper presents a model for using the Internet to teach high school students about plasma physics and fusion energy. Students aremore » given access to real-time data, virtual experiments, and communication with professional scientists via email. Preliminary data indicate that student collaboration and student-led learning is encouraged when using the site in the classroom.« less
  • The intercomparison of atmospheric general circulation model (AGCM) experiments of a similar type has become an increasingly popular methodology for assessing the strengths and weaknesses of climate simulations. In such endeavors, attempts to attribute differences among the simulations to specific model properties require, as a minimum prerequisite, the accurate and comprehensive documentation of these features. Regrettably however, atmospheric model documentation typically is fragmentary and scattered across numerous publications. It is also often inaccurate, in the sense that the pace of model development and the proliferation of new model versions usually outstrip their recorded descriptions. More often than not, the detailedmore » configuration of a model for a particular experiment also is undocumented. In addition, there may be much unevenness in the descriptions of different facets of models. This incompleteness usually is replicated in published results of an intercomparison experiment, in that participating models` features often are summarized only perfunctorily. Summary documentation of the numerics, dynamics, and physics of models participating in the Atmospheric Model Intercomparison Project (AMIP) is now available on the Internet`s World Wide Web. This paper describes the principal attributes of the electronic model documentation and provides instructions on how to access it.« less
  • This report discusses the following topics dealing with searching the internet at the PEP-II storage ring facility: (1) what is the Internet, Mosaic and Netscape; (2) using URL`s; (3) Netscape menus and buttons - what they do; (4) Using bookmarks; (5) FTP through Netscape; (6) FTP through Fetch on the Macintosh; (7) installation Netscape; (8) configuring Netscape; and (9) references.
  • WebTheme is a system designed to facilitate world wide web information access and retrieval through visualization. It consists of two principal pieces, a WebTheme Server which allows users to enter in a query and automatocally harvest and process information of interest, and a WebTheme browser, which allows users to work with both Galaxies and Themescape visualizations of their data within a JAVA capable world wide web browser. WebTheme is an Internet solution, meaning that access to the server and the resulting visualizations can all be performed through the use of a WWW browser. This allows users to access and interactmore » with SPIRE (Spatial Paradigm for Information Retrieval and Exploration) based visualizations through a web browser regardless of what computer platforms they are running on. WebTheme is specifically designed to create databases by harvesting and processing WWW home pages available on the Internet.« less
  • WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java{trademark} language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualize and analyze events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java{trademark} language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. Wemore » have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.« less