skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conversion of research and test reactors : status and current plans.

Abstract

The Office of Global Threat Reduction's (GTRI) Conversion Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The Conversion program mission supports the minimization and, to the extent possible, elimination of the use of HEU in civil nuclear applications by working to convert research reactors and radioisotope production processes to the use of LEU fuel and targets throughout the world. During the Program's 27 years of existence, 46 research reactors have been converted from HEU to LEU fuels and processes have been developed for producing the medical isotope Mo-99 with LEU targets. Under GTRI the Conversion Program has accelerated the schedules and plans for conversion of additional research reactors operating with HEU. Also the Program emphasizes the development of advanced high-density LEU fuels to enable further conversions. The Conversion program coordinates with the other program functions of GTRI, most notably the Removal function, which removes fresh and spent HEU fuel from countries around the world. This paper summarizes the current status and plans for conversion of research reactors, in the U.S. and abroad, the supporting fuel development activities, and the development of processes for medicalmore » isotope production with LEU targets. Nuclear research and test reactors worldwide have been in operation for over 60 years, supporting nuclear science and technology development, as well as providing an important role as a research tool in scientific fields including medicine, agriculture, industry, and basic research. Over 270 research reactors are currently operating in more than 50 countries. Starting in 1954, many research reactors outside the United States were provided under the Atoms for Peace initiative. Initial research reactors were fueled with low-enriched uranium (LEU) with a content of U235 of less than 20%. More advanced research reactors desired higher specific power and neutron flux and, to avoid costs associated with the development of higher density LEU fuels, those reactors used high-enriched uranium (HEU) material, with an enrichment of 20% or higher, and typically over 90%, with the existing fuel designs. As HEU fuel became readily available, it turned into the usual fuel for research and test reactors, even for some that had initially operated with LEU fuel.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
982610
Report Number(s):
ANL/NE/CP-58871
TRN: US1005337
DOE Contract Number:
DE-AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Conference: RRFM-IGORR 2007; Mar. 11, 2007 - Mar. 15, 2007; Lyon, France
Country of Publication:
United States
Language:
ENGLISH
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; ENRICHED URANIUM; FUELS; ISOTOPE PRODUCTION; NEUTRON FLUX; REACTORS; RESEARCH AND TEST REACTORS; RESEARCH REACTORS; URANIUM

Citation Formats

Roglans, J., Staples, P., Butler, N., and Nuclear Engineering Division. Conversion of research and test reactors : status and current plans.. United States: N. p., 2007. Web.
Roglans, J., Staples, P., Butler, N., & Nuclear Engineering Division. Conversion of research and test reactors : status and current plans.. United States.
Roglans, J., Staples, P., Butler, N., and Nuclear Engineering Division. Mon . "Conversion of research and test reactors : status and current plans.". United States. doi:.
@article{osti_982610,
title = {Conversion of research and test reactors : status and current plans.},
author = {Roglans, J. and Staples, P. and Butler, N. and Nuclear Engineering Division},
abstractNote = {The Office of Global Threat Reduction's (GTRI) Conversion Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The Conversion program mission supports the minimization and, to the extent possible, elimination of the use of HEU in civil nuclear applications by working to convert research reactors and radioisotope production processes to the use of LEU fuel and targets throughout the world. During the Program's 27 years of existence, 46 research reactors have been converted from HEU to LEU fuels and processes have been developed for producing the medical isotope Mo-99 with LEU targets. Under GTRI the Conversion Program has accelerated the schedules and plans for conversion of additional research reactors operating with HEU. Also the Program emphasizes the development of advanced high-density LEU fuels to enable further conversions. The Conversion program coordinates with the other program functions of GTRI, most notably the Removal function, which removes fresh and spent HEU fuel from countries around the world. This paper summarizes the current status and plans for conversion of research reactors, in the U.S. and abroad, the supporting fuel development activities, and the development of processes for medical isotope production with LEU targets. Nuclear research and test reactors worldwide have been in operation for over 60 years, supporting nuclear science and technology development, as well as providing an important role as a research tool in scientific fields including medicine, agriculture, industry, and basic research. Over 270 research reactors are currently operating in more than 50 countries. Starting in 1954, many research reactors outside the United States were provided under the Atoms for Peace initiative. Initial research reactors were fueled with low-enriched uranium (LEU) with a content of U235 of less than 20%. More advanced research reactors desired higher specific power and neutron flux and, to avoid costs associated with the development of higher density LEU fuels, those reactors used high-enriched uranium (HEU) material, with an enrichment of 20% or higher, and typically over 90%, with the existing fuel designs. As HEU fuel became readily available, it turned into the usual fuel for research and test reactors, even for some that had initially operated with LEU fuel.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • No abstract prepared.
  • Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included inmore » the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo{sup 99}) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.« less
  • The U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Reactor Conversion Program supports the minimization, and to the extent possible, elimination of the use of high enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors and radioisotope production processes to the use of low enriched uranium (LEU). The Reactor Conversion Program is a technical pillar of the NNSA Global Threat Reduction Initiative (GTRI) which is a key organization for implementing U.S. HEU minimization policy and works to reduce and protect vulnerable nuclear and radiological material domestically and abroad.
  • Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.
  • The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodiummore » has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.« less