skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

Abstract

Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

Authors:
 [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
FE USDOE - Office of Fossil Energy (FE)
OSTI Identifier:
981762
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Energy Materials: Materials Science & Engineering for Energy Systems; Journal Volume: 2; Journal Issue: 4
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALLOYS; BOILERS; CREEP; EVALUATION; HAYNES ALLOYS; PRESSURE VESSELS; PRESSURIZATION; RECRYSTALLIZATION; RUPTURES; STAINLESS STEELS; STEAM; Nickel-based alloys; cold-work; pre-strain; creep; recrystallization

Citation Formats

Shingledecker, John P. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications. United States: N. p., 2007. Web. doi:10.1179/1174892408X383094.
Shingledecker, John P. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications. United States. doi:10.1179/1174892408X383094.
Shingledecker, John P. Mon . "Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications". United States. doi:10.1179/1174892408X383094.
@article{osti_981762,
title = {Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications},
author = {Shingledecker, John P},
abstractNote = {Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.},
doi = {10.1179/1174892408X383094},
journal = {Energy Materials: Materials Science & Engineering for Energy Systems},
number = 4,
volume = 2,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}