skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The 1.6 Astroms Crystal Structure of Mycobacterium smegmatis MshC: The Penultimate Enzyme in the Mycothiol Biosynthetic Pathway

Journal Article · · Biochemistry
DOI:https://doi.org/10.1021/bi801708f· OSTI ID:980617

Mycobacterium smegmatis MshC catalyzes the ATP-dependent condensation of GlcN-Ins and l-cysteine to form l-Cys-GlcN-Ins, the penultimate step in mycothiol biosynthesis. Attempts to crystallize the native, full-length MshC have been unsuccessful. However, incubation of the enzyme with the cysteinyl adenylate analogue, 5?-O-[N-(l-cysteinyl)-sulfamonyl]adenosine (CSA), followed by a 24-h limited trypsin proteolysis yielded an enzyme preparation that readily crystallized. The three-dimensional structure of MshC with CSA bound in the active site was solved and refined to 1.6 A. The refined structure exhibited electron density corresponding to the entire 47 kDa MshC molecule, with the exception of the KMSKS loop (residues 285-297), a loop previously implicated in the formation of the adenylate in related tRNA synthases. The overall tertiary fold of MshC is similar to that of cysteinyl-tRNA synthetase, with a Rossmann fold catalytic domain. The interaction of the thiolate of CSA with a zinc ion at the base of the active site suggests that the metal ion participates in amino acid binding and discrimination. A number of active site residues were observed to interact with the ligand, suggesting a role in substrate binding and catalysis. Analysis utilizing modeling of the proteolyzed loop and GlcN-Ins docking, as well as the examination of sequence conservation in the active site suggests similarities and differences between cysteinyl-tRNA synthetases and MshC in recognition of the substrates for their respective reactions.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
980617
Report Number(s):
BNL-93535-2010-JA; TRN: US201015%%2002
Journal Information:
Biochemistry, Vol. 47
Country of Publication:
United States
Language:
English