skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new paradigm for whole core neutron transport without homogenization.


No abstract prepared.

; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
Report Number(s):
TRN: US1002699
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Joint International Topical Meeting on Mathematics & Computations and Supercomputing in Nuclear Applications (M&C + SNA 2007); Apr. 15, 2007 - Apr. 19, 2007; Monterey, CA
Country of Publication:
United States

Citation Formats

Lewis, E. E., Smith, M. A., Palmiotti, G., Nuclear Engineering Division, and Northwestern Univ. A new paradigm for whole core neutron transport without homogenization.. United States: N. p., 2007. Web.
Lewis, E. E., Smith, M. A., Palmiotti, G., Nuclear Engineering Division, & Northwestern Univ. A new paradigm for whole core neutron transport without homogenization.. United States.
Lewis, E. E., Smith, M. A., Palmiotti, G., Nuclear Engineering Division, and Northwestern Univ. Mon . "A new paradigm for whole core neutron transport without homogenization.". United States. doi:.
title = {A new paradigm for whole core neutron transport without homogenization.},
author = {Lewis, E. E. and Smith, M. A. and Palmiotti, G. and Nuclear Engineering Division and Northwestern Univ.},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The variational nodal method implemented in the VARIANT code is generalized to perform full core transport calculations without spatial homogenization of cross sections at either the fuel-pin cell or fuel assembly level. The node size is chosen to correspond to one fuel-pin cell in the radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux distribution represented by piecewise linear trial functions. The step change in the cross sections at the fuel-coolant interface can thus be represented explicitly in global calculations while retaining the fill spherical harmonics capability of VARIANT. The resulting method is appliedmore » to a two-dimensional seven-group representation of a LWR containing MOX fuel assemblies. Comparisons are made of the accuracy of various space-angle approximations and of the corresponding CPU times.« less
  • A new paradigm that increases the efficiency of whole-core neutron transport calculations without lattice homogenization is introduced. Quasi-reflected interface conditions are formulated to partially decouple periodic lattice effects from global flux gradients. The starting point is the finite subelement form of the variational nodal code VARIANT that eliminates fuel-coolant homogenization through the use of heterogeneous nodes. The interface spherical harmonics expansions that couple pin-cell-sized nodes are divided into low-order and high-order terms, and reflected interface conditions are applied to the high-order terms. Combined with an integral transport method within the node, the new approach dramatically reduces both the formation timemore » and the dimensions of the nodal response matrices and leads to sharply reduced memory requirements and computational time. The method is applied to the two-dimensional C5G7 problem, an Organisation for Economic Co-operation and Development/Nuclear Energy Agency pressurized water reactor benchmark containing mixed oxide (MOX) and UO{sub 2} fuel assemblies, as well as to a three-dimensional MOX fuel assembly. Results indicate the new approach results in very little loss of accuracy relative to the corresponding full spherical harmonics expansions while reducing computational times by well over an order of magnitude.« less
  • The variational nodal method is generalized by dividing each spatial node into a number of triangular finite elements designated as subelements. The finite subelement trail functions allow for explicit geometry representations within each node, thus eliminating the need for nodal homogenization. The method is implemented within the Argonne National Laboratory code VARIANT and applied to two-dimensional multigroup problems. Eigenvalue and pin-power results are presented for a four-assembly OECD/NEA benchmark problem containing enriched U{sub 2} and MOX fuel pins. Our seven-group model combines spherical or simplified spherical harmonic approximations in angle with isoparametric linear or quadratic subelement basis functions, thus eliminatingmore » the need for fuel-coolant homogenization. Comparisons with reference seven-group Monte Carlo solutions indicate that in the absence of pin-cell homogenization, high-order angular approximations are required to obtain accurate eigenvalues, while the results are substantially less sensitive to the refinement of the finite subelement grids.« less
  • No abstract prepared.
  • The AGENT (Arbitrary Geometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used tomore » couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic sub-meshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Re-balancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such as three-dimensional maps of the energy-dependent mesh-wise scalar flux, reaction rate and power peaking factor. The AGENT code is in a process of an extensive and rigorous testing for various reactor types through the evaluation of its performance (ability to model any reactor geometry type), accuracy (in comparison with Monte Carlo results and other deterministic solutions or experimental data) and efficiency (computational speed that is directly determined by the mathematical and numerical solution to the iterative approach of the flux convergence). This paper outlines main aspects of the theories unified into the AGENT code formalism and demonstrates the code performance, accuracy and efficiency using few representative examples. The AGENT code is a main part of the so called virtual reactor system developed for numerical simulations of research reactors. Few illustrative examples of the web interface are briefly outlined. (authors)« less