skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, Crystal Structure, and Properties of the Rhomboheral Modification of the Thiospinel CuZr1.86(1)S4

Abstract

The rhombohedral modification of the thiospinel, CuZr{sub 1.86(1)}S{sub 4}, has been synthesized by the reaction of the constituent elements in an alkali metal halide flux and structurally characterized by single crystal X-ray diffraction techniques. The title compound crystallizes in the rhombohedral space group D{sub 3d}{sup 5}-R{bar 3}m (166, a=7.3552(2) {angstrom}, c=35.832(2) {angstrom}, V=1678.76(13) {angstrom}{sup 3}, Z=12, and R/wR=0.0239/0.0624). The structure is composed of close packed S layers, with a stacking order of ABCBCABABCACAB along the c axis. The Zr and Cu atoms occupy the octahedral and tetrahedral holes between S layers, respectively. Three different kinds of S-M-S layers exist in the structure: layer I has fully occupied Zr and Cu sites, layer II has fully occupied Zr sites but no Cu, and layer III has partially occupied Zr and fully occupied Cu sites. Transport and optical properties indicate that the title compound is a small band gap (1.26 eV) n-type semiconductor.

Authors:
 [1];  [2];  [3];  [1]
  1. Cornell University
  2. ORNL
  3. Ajou University, Suwon, South Korea
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
973547
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 183; Journal Issue: 3
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALKALI METALS; ATOMS; CRYSTAL STRUCTURE; HALIDES; MODIFICATIONS; MONOCRYSTALS; OPTICAL PROPERTIES; SPACE GROUPS; SYNTHESIS; TRANSPORT; X-RAY DIFFRACTION

Citation Formats

Dong, Yongkwan, McGuire, Michael A, Hoseop, Yun, and DiSalvo, Francis J. Synthesis, Crystal Structure, and Properties of the Rhomboheral Modification of the Thiospinel CuZr1.86(1)S4. United States: N. p., 2009. Web.
Dong, Yongkwan, McGuire, Michael A, Hoseop, Yun, & DiSalvo, Francis J. Synthesis, Crystal Structure, and Properties of the Rhomboheral Modification of the Thiospinel CuZr1.86(1)S4. United States.
Dong, Yongkwan, McGuire, Michael A, Hoseop, Yun, and DiSalvo, Francis J. 2009. "Synthesis, Crystal Structure, and Properties of the Rhomboheral Modification of the Thiospinel CuZr1.86(1)S4". United States. doi:.
@article{osti_973547,
title = {Synthesis, Crystal Structure, and Properties of the Rhomboheral Modification of the Thiospinel CuZr1.86(1)S4},
author = {Dong, Yongkwan and McGuire, Michael A and Hoseop, Yun and DiSalvo, Francis J.},
abstractNote = {The rhombohedral modification of the thiospinel, CuZr{sub 1.86(1)}S{sub 4}, has been synthesized by the reaction of the constituent elements in an alkali metal halide flux and structurally characterized by single crystal X-ray diffraction techniques. The title compound crystallizes in the rhombohedral space group D{sub 3d}{sup 5}-R{bar 3}m (166, a=7.3552(2) {angstrom}, c=35.832(2) {angstrom}, V=1678.76(13) {angstrom}{sup 3}, Z=12, and R/wR=0.0239/0.0624). The structure is composed of close packed S layers, with a stacking order of ABCBCABABCACAB along the c axis. The Zr and Cu atoms occupy the octahedral and tetrahedral holes between S layers, respectively. Three different kinds of S-M-S layers exist in the structure: layer I has fully occupied Zr and Cu sites, layer II has fully occupied Zr sites but no Cu, and layer III has partially occupied Zr and fully occupied Cu sites. Transport and optical properties indicate that the title compound is a small band gap (1.26 eV) n-type semiconductor.},
doi = {},
journal = {Journal of Solid State Chemistry},
number = 3,
volume = 183,
place = {United States},
year = 2009,
month = 1
}
  • The rhombohedral modification of the thiospinel, CuZr{sub 1.86(1)}S{sub 4}, has been synthesized by the reaction of the constituent elements in an alkali metal halide flux and structurally characterized by single crystal X-ray diffraction techniques. The title compound crystallizes in the rhombohedral space group D{sub 3d}{sup 5}-R3-barm (no. 166, a=7.3552(2) A, c=35.832(2) A, V=1678.76(13) A{sup 3}, Z=12, and R/wR=0.0239/0.0624). The structure is composed of close packed S layers, with a stacking order of ...ABCBCABABCACAB....along the c axis. The Zr and Cu atoms occupy the octahedral and tetrahedral holes between S layers, respectively. Three different kinds of S-M-S layers exist in themore » structure: layer I has fully occupied Zr and Cu sites, layer II has fully occupied Zr sites but no Cu, and layer III has partially occupied Zr and fully occupied Cu sites. Transport and optical properties indicate that the title compound is a small band gap (1.26 eV) n-type semiconductor. - Graphical abstract: The projected view of the rhombohedral modification, CuZr{sub 1.86(1)}S{sub 4}, down the [100] direction. Large letters denote the packing sequence of the S atoms (yellow circles) along the c axis. Zr (black circles) and Cu (red circles) atoms occupy the octahedral and tetrahedral holes, respectively, between close packed S layers.« less
  • Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less
  • The spin-crossover (SCO) transition is an interesting phenomenon in which a metal center transitions from a low-spin state to a high-spin state (or vice versa) upon some external perturbation. Only a few studies have investigated the SCO transition in crystalline compounds and the Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} thiospinels present an opportunity for such a study. Fe K-XANES has been used to investigate the changes in the electronic structure of these materials as Ti is substituted for Sn. The room-temperature Fe K-edge XANES spectra showed that the pre-edge intensity increased with increasing Ti content as a result of the Fe-Smore » bond becoming more covalent. Ti K- and S K-edge XANES spectra confirmed this analysis. Electronic structure calculations were also performed to aid in the interpretation of the XANES spectra. Temperature-dependent Fe K-edge XANES spectra were further collected to study the SCO transition and showed that the main-edge features decreased in intensity with decreasing temperature, corresponding to variations in the average Fe{sup 2+} spin-state. - Graphical abstract: The Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} spin-crossover materials have been investigated by XANES. The pre-edge region of the Fe K-edge spectra increases with greater Ti incorporation because of the Fe-S bonds becoming more covalent. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}FeSn{sub 3-x}Ti{sub x}S{sub 8} thiospinels were investigated by XANES. Black-Right-Pointing-Pointer The covalency of the Fe-S and Ti-S bonds increases with greater Ti incorporation. Black-Right-Pointing-Pointer T-dependent Fe K-edge XANES spectra were collected to investigate SCO transitions. Black-Right-Pointing-Pointer Covalent bonding makes study of the SCO transition difficult by Fe K-edge XANES. Black-Right-Pointing-Pointer The bonding interactions were investigated through examination of S K-edge spectra.« less
  • Li{sub 8}FeSm{sub 22}O{sub 38} single crystals have been grown by spontaneous flux crystallization, and their structure has been identified by X-ray diffraction analysis as follows: cubic crystals, a = 11.9078(5) A, sp.gr. Im 3{sup -} m, Z = 2. Fe atoms occupy two mixed positions. Magnetic ions have different ligand environments: a regular octahedron (Sm/Fe)O{sub 6}, a three-cap trigonal prism SmO{sub 9}, and a square antiprism SmO{sub 8}. The rather low Neel temperature ({approx}3 K) can be explained by the considerable variation in the angles and lengths of exchange couplings between magnetic ions.