skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Jack Rabbit Pretest 2021E PT7 Photonic Doppler Velocimetry Data Volume 7 Section 1

Technical Report ·
DOI:https://doi.org/10.2172/972820· OSTI ID:972820

The Jack Rabbit Pretest (PT) 2021E PT7 experiment was fired on April 3, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT7, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on the central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The PDV earliest signal extinction was 50.7 microseconds at 45 millimeters. The latest PDV signal extinction time was 65.0 microseconds at 20 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters and at 15.2 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1447 meters per second. At 65 millimeters the last measured velocity was 2360 meters per second. The low-to-high velocity ratio was 0.61. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 49 kilobars at 23.3 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 4.6 microseconds.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
972820
Report Number(s):
LLNL-TR-405006; TRN: US201006%%518
Country of Publication:
United States
Language:
English