skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An improved convergence bound for aggregation-based domain decomposition preconditioners.

Abstract

In this paper we present a two-level overlapping domain decomposition preconditioner for the finite-element discretization of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction, based on aggregation techniques, is added. Our definition of the coarse space does not require the introduction of a coarse grid. We consider a set of assumptions on the coarse basis functions to bound the condition number of the resulting preconditioned system. These assumptions involve only geometrical quantities associated with the aggregates and the subdomains. We prove that the condition number using the two-level additive Schwarz preconditioner is O(H/{delta} + H{sub 0}/{delta}), where H and H{sub 0} are the diameters of the subdomains and the aggregates, respectively, and {delta} is the overlap among the subdomains and the aggregates. This extends the bounds presented in [C. Lasser and A. Toselli, Convergence of some two-level overlapping domain decomposition preconditioners with smoothed aggregation coarse spaces, in Recent Developments in Domain Decomposition Methods, Lecture Notes in Comput. Sci. Engrg. 23, L. Pavarino and A. Toselli, eds., Springer-Verlag, Berlin, 2002, pp. 95-117; M. Sala, Domain Decomposition Preconditioners: Theoretical Properties, Application to the Compressible Euler Equations, Parallel Aspects, Ph.D. thesis,more » Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2003; M. Sala, Math. Model. Numer. Anal., 38 (2004), pp. 765-780]. Numerical experiments on a model problem are reported to illustrate the performance of the proposed preconditioner.« less

Authors:
; ;
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
972459
Report Number(s):
SAND2005-3834J
TRN: US201006%%17
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Journal Article
Journal Name:
Proposed for publication in the SIAM Journal on Matrix Analysis and Applications.
Additional Journal Information:
Journal Name: Proposed for publication in the SIAM Journal on Matrix Analysis and Applications.
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; FINITE ELEMENT METHOD; CONVERGENCE; PERFORMANCE; BOUNDARY CONDITIONS

Citation Formats

Shadid, John Nicolas, Sala, Marzio, and Tuminaro, Raymond Stephen. An improved convergence bound for aggregation-based domain decomposition preconditioners.. United States: N. p., 2005. Web.
Shadid, John Nicolas, Sala, Marzio, & Tuminaro, Raymond Stephen. An improved convergence bound for aggregation-based domain decomposition preconditioners.. United States.
Shadid, John Nicolas, Sala, Marzio, and Tuminaro, Raymond Stephen. Wed . "An improved convergence bound for aggregation-based domain decomposition preconditioners.". United States.
@article{osti_972459,
title = {An improved convergence bound for aggregation-based domain decomposition preconditioners.},
author = {Shadid, John Nicolas and Sala, Marzio and Tuminaro, Raymond Stephen},
abstractNote = {In this paper we present a two-level overlapping domain decomposition preconditioner for the finite-element discretization of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction, based on aggregation techniques, is added. Our definition of the coarse space does not require the introduction of a coarse grid. We consider a set of assumptions on the coarse basis functions to bound the condition number of the resulting preconditioned system. These assumptions involve only geometrical quantities associated with the aggregates and the subdomains. We prove that the condition number using the two-level additive Schwarz preconditioner is O(H/{delta} + H{sub 0}/{delta}), where H and H{sub 0} are the diameters of the subdomains and the aggregates, respectively, and {delta} is the overlap among the subdomains and the aggregates. This extends the bounds presented in [C. Lasser and A. Toselli, Convergence of some two-level overlapping domain decomposition preconditioners with smoothed aggregation coarse spaces, in Recent Developments in Domain Decomposition Methods, Lecture Notes in Comput. Sci. Engrg. 23, L. Pavarino and A. Toselli, eds., Springer-Verlag, Berlin, 2002, pp. 95-117; M. Sala, Domain Decomposition Preconditioners: Theoretical Properties, Application to the Compressible Euler Equations, Parallel Aspects, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2003; M. Sala, Math. Model. Numer. Anal., 38 (2004), pp. 765-780]. Numerical experiments on a model problem are reported to illustrate the performance of the proposed preconditioner.},
doi = {},
journal = {Proposed for publication in the SIAM Journal on Matrix Analysis and Applications.},
number = ,
volume = ,
place = {United States},
year = {2005},
month = {6}
}