Development of technology of high density LEU dispersion fuel fabrication.
Abstract
Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.
- Authors:
- Publication Date:
- Research Org.:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Org.:
- USDOE National Nuclear Security Administration (NNSA)
- OSTI Identifier:
- 971161
- Report Number(s):
- ANL/NE/CP-60284
TRN: US1001046
- DOE Contract Number:
- DE-AC02-06CH11357
- Resource Type:
- Conference
- Resource Relation:
- Conference: 2007 RERTR International Meeting; Sep. 23, 2007 - Sep. 27, 2007; Prague, Czech Republic
- Country of Publication:
- United States
- Language:
- ENGLISH
- Subject:
- 22 GENERAL STUDIES OF NUCLEAR REACTORS; ALLOYS; ALUMINIUM; ANL; ATOMIZATION; BONDING; DIMENSIONS; DISTRIBUTION; ELECTRODES; FABRICATION; FUEL ELEMENTS; FUEL PLATES; MANUFACTURING; MATRICES; PLATES; RESEARCH AND TEST REACTORS; SHAPE; TUNGSTEN
Citation Formats
Wiencek, T., Totev, T., and Nuclear Engineering Division. Development of technology of high density LEU dispersion fuel fabrication.. United States: N. p., 2007.
Web.
Wiencek, T., Totev, T., & Nuclear Engineering Division. Development of technology of high density LEU dispersion fuel fabrication.. United States.
Wiencek, T., Totev, T., and Nuclear Engineering Division. Mon .
"Development of technology of high density LEU dispersion fuel fabrication.". United States.
doi:.
@article{osti_971161,
title = {Development of technology of high density LEU dispersion fuel fabrication.},
author = {Wiencek, T. and Totev, T. and Nuclear Engineering Division},
abstractNote = {Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
-
Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearlymore »
-
Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications.
Uranium alloys are candidates for the fuel phase in aluminum matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. Previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminum interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic {gamma}-phase during fabrication and irradiation, i.e., at temperatures at which {alpha}-U is the equilibrium phase. Transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degreesmore » -
Current status of the development of high density LEU fuel for Russian research reactors
One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » -
Update on US High Density Fuel Fabrication Development
Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.