skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anomaly detection and diagnosis in Grid environments.

Abstract

Identifying and diagnosing anomalies in application behavior is critical to delivering reliable application-level performance. In this paper we introduce a strategy to detect anomalies and diagnose the possible reasons behind them. Our approach extends the traditional window-based strategy by using signal-processing techniques to filter out recurring, background fluctuations in resource behavior. In addition, we have developed a diagnosis technique that uses standard monitoring data to determine which related changes in behavior may cause anomalies. We evaluate our anomaly detection and diagnosis technique by applying it in three contexts when we insert anomalies into the system at random intervals. The experimental results show that our strategy detects up to 96% of anomalies while reducing the false positive rate by up to 90% compared to the traditional window average strategy. In addition, our strategy can diagnose the reason for the anomaly approximately 75% of the time.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
971154
Report Number(s):
ANL/MCS/CP-59796
TRN: US201003%%601
DOE Contract Number:  
DE-AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Conference: International Conference for High Performance Computing, Networking, Storage, and Analysis (SC07); Nov. 10, 2007 - Nov. 16, 2007; Reno, NV
Country of Publication:
United States
Language:
ENGLISH
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; DETECTION; DIAGNOSIS; FLUCTUATIONS; MONITORING; PERFORMANCE; STORAGE; WINDOWS

Citation Formats

Yang, L., Liu, C., Schopf, J. M., Foster, I., Mathematics and Computer Science, Univ. of Chicago, and Microsoft Corp. Anomaly detection and diagnosis in Grid environments.. United States: N. p., 2007. Web. doi:10.1145/1362622.1362667.
Yang, L., Liu, C., Schopf, J. M., Foster, I., Mathematics and Computer Science, Univ. of Chicago, & Microsoft Corp. Anomaly detection and diagnosis in Grid environments.. United States. doi:10.1145/1362622.1362667.
Yang, L., Liu, C., Schopf, J. M., Foster, I., Mathematics and Computer Science, Univ. of Chicago, and Microsoft Corp. Mon . "Anomaly detection and diagnosis in Grid environments.". United States. doi:10.1145/1362622.1362667.
@article{osti_971154,
title = {Anomaly detection and diagnosis in Grid environments.},
author = {Yang, L. and Liu, C. and Schopf, J. M. and Foster, I. and Mathematics and Computer Science and Univ. of Chicago and Microsoft Corp.},
abstractNote = {Identifying and diagnosing anomalies in application behavior is critical to delivering reliable application-level performance. In this paper we introduce a strategy to detect anomalies and diagnose the possible reasons behind them. Our approach extends the traditional window-based strategy by using signal-processing techniques to filter out recurring, background fluctuations in resource behavior. In addition, we have developed a diagnosis technique that uses standard monitoring data to determine which related changes in behavior may cause anomalies. We evaluate our anomaly detection and diagnosis technique by applying it in three contexts when we insert anomalies into the system at random intervals. The experimental results show that our strategy detects up to 96% of anomalies while reducing the false positive rate by up to 90% compared to the traditional window average strategy. In addition, our strategy can diagnose the reason for the anomaly approximately 75% of the time.},
doi = {10.1145/1362622.1362667},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: