skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

Abstract

A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
967252
Report Number(s):
ANL/AES/CP-118715
TRN: US0904331
DOE Contract Number:
DE-AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Conference: 9th International Conference on Synchrotron Radiation Instrumentation (SRI 2006); May 28, 2006 - Jun. 2, 2006; Daegu, Korea
Country of Publication:
United States
Language:
ENGLISH
Subject:
43 PARTICLE ACCELERATORS; ACCURACY; ADVANCED PHOTON SOURCE; APERTURES; DESIGN; PEAK LOAD; SYNCHROTRON RADIATION; TUNGSTEN; WIGGLER MAGNETS

Citation Formats

Benson, C., Jaski, Y., Maser, J., Powers, T., Schmidt, O., and Rossi, E. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.. United States: N. p., 2007. Web.
Benson, C., Jaski, Y., Maser, J., Powers, T., Schmidt, O., & Rossi, E. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.. United States.
Benson, C., Jaski, Y., Maser, J., Powers, T., Schmidt, O., and Rossi, E. Mon . "White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.". United States. doi:.
@article{osti_967252,
title = {White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.},
author = {Benson, C. and Jaski, Y. and Maser, J. and Powers, T. and Schmidt, O. and Rossi, E.},
abstractNote = {A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less
  • A set of precision horizontal and vertical white-beam slits has been designed for an undulator beamline at the Advanced Photon Source. Due to the powerful x-ray heat flux emitted by the undulator, it is difficult to control the thermal distortion within the desired range of 1-2 microns. We analyzed many conceptual designs in an attempt to minimize the thermal distortion of the slits. Even with 1-mm-thick, low-Z material (graphite) coated on the heating surface of a traditional slit, the maximum thermal distortion is over 25 microns. A three-piece slit was then designed to satisfy the requirements. It consists of onemore » large block, two tungsten knife edges, and an OFHC cooling tube (filled with copper mesh) brazed inside the large block. The thermal distortion at the knife edges of this three-piece slit has a relative displacement of less than 2 microns.« less
  • A set of precision, vertical, white-beam slits has been designed for an undulator/wiggler beamline at the Advanced Photon Source (APS). The slit, a knife-edge-type precision device, is required to have very small thermal distortion during operation with beam. The traditional slit consists of a cooling block and an OFHC cooling channel inside the block. Our design consists of one large block and an OFHC cooling tune (filler with copper mesh) brazed inside the large block. This design will accommodate the x-ray source from both undulators and wigglers. Due to the powerful x-ray heat flux coming from APS Undulator A, itmore » is an exceedingly difficult problem to reduce the thermal distortion to less than 50 microns as required by some users.« less
  • A set of precision, vertical, white-beam slits has been designed for an undulator/wiggler beamline at the Advanced Photon Source (APS). The slit, a knife-edge-type precision device, is required to have very small thermal distortion during operation with beam. The traditional slit consists of a cooling block and an OFHC cooling channel inside the block. The design consists of one large block and an OFHC cooling tube (filled with copper mesh) brazed inside the large block. This design will accommodate the x-ray source from both undulators and wigglers. Due to the powerful x-ray heat flux coming from APS Undulator A, itmore » is an exceedingly difficult problem to reduce the thermal distortion to less than 50 [mu]m as required by some users.« less