skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modularized Parallel Neutron Instrument Simulation on the TeraGrid

Abstract

In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serial instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of themore » new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.« less

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
Work for Others (WFO)
OSTI Identifier:
966078
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: TeraGrid '07 Conference, Madison, WI, USA, 20070704, 20070704
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COMMISSIONING; DESIGN; EFFICIENCY; EVALUATION; EXPERIMENT PLANNING; FLEXIBILITY; NEUTRON SOURCES; NEUTRONS; OPTIMIZATION; ORNL; RESOLUTION; SCHEDULES; SIMULATION; SPALLATION; TARGETS

Citation Formats

Chen, Meili, Cobb, John W, Hagen, Mark E, Miller, Stephen D, and Lynch, Vickie E. Modularized Parallel Neutron Instrument Simulation on the TeraGrid. United States: N. p., 2007. Web.
Chen, Meili, Cobb, John W, Hagen, Mark E, Miller, Stephen D, & Lynch, Vickie E. Modularized Parallel Neutron Instrument Simulation on the TeraGrid. United States.
Chen, Meili, Cobb, John W, Hagen, Mark E, Miller, Stephen D, and Lynch, Vickie E. Mon . "Modularized Parallel Neutron Instrument Simulation on the TeraGrid". United States. doi:.
@article{osti_966078,
title = {Modularized Parallel Neutron Instrument Simulation on the TeraGrid},
author = {Chen, Meili and Cobb, John W and Hagen, Mark E and Miller, Stephen D and Lynch, Vickie E},
abstractNote = {In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serial instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted.
  • Remote job execution gives neutron science facilities access to high performance computing such as the TeraGrid. A scientific community can use community software with a community certificate and account through a common interface of a portal. Results show this approach is successful, but with more testing and problem solving, we expect remote job executions to become more reliable.
  • The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNSmore » will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.« less
  • IB is a Monte Carlo simulation tool for aiding neutron scattering instrument designs. It is written in C++ and implemented under Parallel Virtual Machine. The program has a few basic components, or modules, that can be used to build a virtual neutron scattering instrument. More complex components, such as neutron guides and multichannel beam benders, can be constructed using the grouping technique unique to IB. Users can specify a collection of modules as a group. For example, a neutron guide can be constructed by grouping four neutron mirrors together that make up the four sides of the guide. IB smore » simulation engine ensures that neutrons entering a group will be properly operated upon by all members of the group. For simulations that require higher computer speed, the program can be run in parallel mode under the PVM architecture. Initially, the program was written for designing instruments on pulsed neutron sources, it has since been used to simulate reactor based instruments as well.« less
  • We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tailmore » with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.« less