skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory

Abstract

In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.

Authors:
;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
965549
Report Number(s):
PNNL-SA-67112
29790; KP1504020; TRN: US200919%%622
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry A, 113(36):9761-9765; Journal Volume: 113; Journal Issue: 36
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; ATTENUATION; CYTOSINE; DNA; EXCITATION; EXCITED STATES; FUNCTIONALS; GROUND STATES; GUANINE; PERFORMANCE; THYMINE; time-dependent density functional theory; excitation; energies; Environmental Molecular Sciences Laboratory

Citation Formats

Jensen, Lasse, and Govind, Niranjan. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory. United States: N. p., 2009. Web. doi:10.1021/jp908490z.
Jensen, Lasse, & Govind, Niranjan. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory. United States. doi:10.1021/jp908490z.
Jensen, Lasse, and Govind, Niranjan. 2009. "Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory". United States. doi:10.1021/jp908490z.
@article{osti_965549,
title = {Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory},
author = {Jensen, Lasse and Govind, Niranjan},
abstractNote = {In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitions in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.},
doi = {10.1021/jp908490z},
journal = {Journal of Physical Chemistry A, 113(36):9761-9765},
number = 36,
volume = 113,
place = {United States},
year = 2009,
month = 9
}
  • In this work we present a study of the excitation energies of adenine, cytosine, guanine, thymine and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC-functionals, BNL, CAM-B3LYP and LC-PBE0 with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement a smaller attenuation parameter was needed which leads to non-optimum performance for ground state properties. B3LYP, on the other hand, severely underestimates the charge transfer (CT) transitionsmore » in the base pairs. Surprisingly we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair, but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance was obtained with the LC-PBE0 functional which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange.« less
  • We study the low-lying excited states of the zinc-porphyrin molecule in aqueous solution using long-range corrected TDDFT.We report results using the CAM-B3LYP and CAM-PBE0 functionals and compare them with previously reported excited states based on high-level coupled cluster (CC) methods. The aqueous environment is treated via a QM/MM approach.
  • A long-range corrected (LC) time-dependent density functional theory (TDDFT) incorporating relativistic effects with spin-orbit couplings is presented. The relativistic effects are based on the two-component zeroth-order regular approximation Hamiltonian. Before calculating the electronic excitations, we calculated the ionization potentials (IPs) of alkaline metal, alkaline-earth metal, group 12 transition metal, and rare gas atoms as the minus orbital (spinor) energies on the basis of Koopmans' theorem. We found that both long-range exchange and spin-orbit coupling effects are required to obtain Koopmans' IPs, i.e., the orbital (spinor) energies, quantitatively in DFT calculations even for first-row transition metals and systems containing large short-rangemore » exchange effects. We then calculated the valence excitations of group 12 transition metal atoms and the Rydberg excitations of rare gas atoms using spin-orbit relativistic LC-TDDFT. We found that the long-range exchange and spin-orbit coupling effects significantly contribute to the electronic spectra of even light atoms if the atoms have low-lying excitations between orbital spinors of quite different electron distributions.« less
  • Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular andmore » periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.« less