skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Next-Generation Photon Sources for Grand Challenges in Science and Energy

Abstract

The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography.more » The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadening in photoelectron spectroscopy and microscopy. But light sources alone are not enough. The photons produced by next-generation light sources must be measured by state-of-the-art experiments installed at fully equipped end stations. Sophisticated detectors with unprecedented spatial, temporal, and spectral resolution must be designed and created. The theory of ultrafast phenomena that have never before been observed must be developed and implemented. Enormous data sets of diffracted signals in reciprocal space and across wide energy ranges must be collected and analyzed in real time so that they can guide the ongoing experiments. These experimental challenges - end stations, detectors, sophisticated experiments, theory, and data handling - must be planned and provided for as part of the photon source.« less

Publication Date:
Research Org.:
DOESC (USDOE Office of Science (SC) (United States))
Sponsoring Org.:
USDOE; Office of Basic Energy Sciences
OSTI Identifier:
964403
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY AND ECONOMY; CARBON DIOXIDE; CHEMICAL BONDS; CHEMICAL REACTIONS; DEGREES OF FREEDOM; ELECTRONS; ENERGY LEVELS; ENERGY RANGE; ENERGY RESOLUTION; FOSSIL FUELS; LIGHT SOURCES; PARTICLE SIZE; PHOTOELECTRON SPECTROSCOPY; PHOTONS; RESOLUTION; SPACE CHARGE; SPATIAL RESOLUTION; TIME RESOLUTION

Citation Formats

None. Next-Generation Photon Sources for Grand Challenges in Science and Energy. United States: N. p., 2009. Web. doi:10.2172/964403.
None. Next-Generation Photon Sources for Grand Challenges in Science and Energy. United States. doi:10.2172/964403.
None. Fri . "Next-Generation Photon Sources for Grand Challenges in Science and Energy". United States. doi:10.2172/964403. https://www.osti.gov/servlets/purl/964403.
@article{osti_964403,
title = {Next-Generation Photon Sources for Grand Challenges in Science and Energy},
author = {None},
abstractNote = {The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadening in photoelectron spectroscopy and microscopy. But light sources alone are not enough. The photons produced by next-generation light sources must be measured by state-of-the-art experiments installed at fully equipped end stations. Sophisticated detectors with unprecedented spatial, temporal, and spectral resolution must be designed and created. The theory of ultrafast phenomena that have never before been observed must be developed and implemented. Enormous data sets of diffracted signals in reciprocal space and across wide energy ranges must be collected and analyzed in real time so that they can guide the ongoing experiments. These experimental challenges - end stations, detectors, sophisticated experiments, theory, and data handling - must be planned and provided for as part of the photon source.},
doi = {10.2172/964403},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2009},
month = {5}
}