skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Storage and turnover of organic matter in soil

Abstract

Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantitymore » and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect decomposition pathways and stabilization. These factors influence the stability of SOM in part by shaping its molecular characteristics, which play a fundamental role in nearly all processes governing SOM stability but are not the focus of this chapter. We review here the most important controls on the distribution and dynamics of SOM at plot to global scales, and methods used to study them. We also explore the concepts of controls, processes, and mechanisms, and how they operate across scales. The concept of SOM turnover, or mean residence time, is central to this chapter and so it is described in some detail. The Appendix details the use of radiocarbon ({sup 14}C), a powerful isotopic tool for studying SOM dynamics. Much of the material here was originally presented at a NATO Advanced Study Institute on 'Soils and Global Change: Carbon Cycle, Trace Gas Exchange and Hydrology', held June 16-27, 1997, at the Chateau de Bonas, France.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
Earth Sciences Division
OSTI Identifier:
964003
Report Number(s):
LBNL-810E
TRN: US200918%%432
DOE Contract Number:  
DE-AC02-05CH11231
Resource Type:
Book
Country of Publication:
United States
Language:
English
Subject:
54; 58; AMPLIFIERS; CARBON; CARBON CYCLE; CLIMATES; ECOSYSTEMS; FERTILITY; GREENHOUSE GASES; HYDROLOGY; LEACHING; MINERALOGY; ORGANIC MATTER; PLANT TISSUES; PRODUCTIVITY; SOILS; STABILITY; STABILIZATION; STORAGE

Citation Formats

Torn, M S, Swanston, C W, Castanha, C, and Trumbore, S E. Storage and turnover of organic matter in soil. United States: N. p., 2008. Web.
Torn, M S, Swanston, C W, Castanha, C, & Trumbore, S E. Storage and turnover of organic matter in soil. United States.
Torn, M S, Swanston, C W, Castanha, C, and Trumbore, S E. 2008. "Storage and turnover of organic matter in soil". United States. https://www.osti.gov/servlets/purl/964003.
@article{osti_964003,
title = {Storage and turnover of organic matter in soil},
author = {Torn, M S and Swanston, C W and Castanha, C and Trumbore, S E},
abstractNote = {Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect decomposition pathways and stabilization. These factors influence the stability of SOM in part by shaping its molecular characteristics, which play a fundamental role in nearly all processes governing SOM stability but are not the focus of this chapter. We review here the most important controls on the distribution and dynamics of SOM at plot to global scales, and methods used to study them. We also explore the concepts of controls, processes, and mechanisms, and how they operate across scales. The concept of SOM turnover, or mean residence time, is central to this chapter and so it is described in some detail. The Appendix details the use of radiocarbon ({sup 14}C), a powerful isotopic tool for studying SOM dynamics. Much of the material here was originally presented at a NATO Advanced Study Institute on 'Soils and Global Change: Carbon Cycle, Trace Gas Exchange and Hydrology', held June 16-27, 1997, at the Chateau de Bonas, France.},
doi = {},
url = {https://www.osti.gov/biblio/964003}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 15 00:00:00 EDT 2008},
month = {Tue Jul 15 00:00:00 EDT 2008}
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share: